OpenOrca/OpenOrca.py

39 lines
1.5 KiB
Python
Raw Normal View History

2023-06-29 23:44:20 +00:00
from datasets import DatasetBuilder, DatasetInfo, SplitGenerator, SplitInfo
from datasets.features import Features, Value
import json
import os
class CustomDataset(DatasetBuilder):
def _info(self) -> DatasetInfo:
return DatasetInfo(
features=Features({
'id': Value('string'),
'system_prompt': Value('string'),
'question': Value('string'),
'response': Value('string')
}),
)
def _split_generators(self, dl_manager):
base_path = 'path_to_your_data'
folders = ['001-cot', '002-flan', '003-flan-1m', '004-flan1m-aug-shuf', '005-flan-5m',
'006-flan-chatgpt', '007-gpt4_100k', '008-niv', '009-t0'] # add more as needed
split_generators = []
for folder in folders:
split_generators.extend([
2023-06-29 23:51:27 +00:00
SplitGenerator(name=f'{folder.replace("-", "_")}_train', gen_kwargs={"filepath": f'{folder}/train.jsonl'}),
SplitGenerator(name=f'{folder.replace("-", "_")}_test', gen_kwargs={"filepath": f'{folder}/test.jsonl'}),
2023-06-29 23:44:20 +00:00
])
return split_generators
def _generate_examples(self, filepath):
with open(filepath, 'r') as f:
for id_, line in enumerate(f):
data = json.loads(line)
yield id_, {
'id': data['id'],
'system_prompt': data['system_prompt'],
'question': data['question'],
'response': data['response']
}