Update instruct_pipeline.py
This commit is contained in:
parent
1c11fae95c
commit
758a161dda
@ -1,9 +1,15 @@
|
||||
import logging
|
||||
import re
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
from transformers import Pipeline, PreTrainedTokenizer
|
||||
|
||||
from transformers.utils import is_tf_available
|
||||
|
||||
if is_tf_available():
|
||||
import tensorflow as tf
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
INSTRUCTION_KEY = "### Instruction:"
|
||||
@ -55,9 +61,22 @@ class InstructionTextGenerationPipeline(Pipeline):
|
||||
def __init__(
|
||||
self, *args, do_sample: bool = True, max_new_tokens: int = 256, top_p: float = 0.92, top_k: int = 0, **kwargs
|
||||
):
|
||||
super().__init__(*args, do_sample=do_sample, max_new_tokens=max_new_tokens, top_p=top_p, top_k=top_k, **kwargs)
|
||||
"""Initialize the pipeline
|
||||
|
||||
def _sanitize_parameters(self, return_instruction_text=False, **generate_kwargs):
|
||||
Args:
|
||||
do_sample (bool, optional): Whether or not to use sampling. Defaults to True.
|
||||
max_new_tokens (int, optional): Max new tokens after the prompt to generate. Defaults to 128.
|
||||
top_p (float, optional): If set to float < 1, only the smallest set of most probable tokens with
|
||||
probabilities that add up to top_p or higher are kept for generation. Defaults to 0.92.
|
||||
top_k (int, optional): The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
||||
Defaults to 0.
|
||||
"""
|
||||
super().__init__(*args, do_sample=do_sample, max_new_tokens=max_new_tokens, top_p=top_p, top_k=top_k,
|
||||
**kwargs)
|
||||
|
||||
def _sanitize_parameters(self,
|
||||
return_full_text: bool = None,
|
||||
**generate_kwargs):
|
||||
preprocess_params = {}
|
||||
|
||||
# newer versions of the tokenizer configure the response key as a special token. newer versions still may
|
||||
@ -81,10 +100,12 @@ class InstructionTextGenerationPipeline(Pipeline):
|
||||
forward_params = generate_kwargs
|
||||
postprocess_params = {
|
||||
"response_key_token_id": response_key_token_id,
|
||||
"end_key_token_id": end_key_token_id,
|
||||
"return_instruction_text": return_instruction_text,
|
||||
"end_key_token_id": end_key_token_id
|
||||
}
|
||||
|
||||
if return_full_text is not None:
|
||||
postprocess_params["return_full_text"] = return_full_text
|
||||
|
||||
return preprocess_params, forward_params, postprocess_params
|
||||
|
||||
def preprocess(self, instruction_text, **generate_kwargs):
|
||||
@ -100,66 +121,92 @@ class InstructionTextGenerationPipeline(Pipeline):
|
||||
def _forward(self, model_inputs, **generate_kwargs):
|
||||
input_ids = model_inputs["input_ids"]
|
||||
attention_mask = model_inputs.get("attention_mask", None)
|
||||
|
||||
if input_ids.shape[1] == 0:
|
||||
input_ids = None
|
||||
attention_mask = None
|
||||
in_b = 1
|
||||
else:
|
||||
in_b = input_ids.shape[0]
|
||||
|
||||
generated_sequence = self.model.generate(
|
||||
input_ids=input_ids.to(self.model.device),
|
||||
attention_mask=attention_mask,
|
||||
pad_token_id=self.tokenizer.pad_token_id,
|
||||
**generate_kwargs,
|
||||
)[0].cpu()
|
||||
)
|
||||
|
||||
out_b = generated_sequence.shape[0]
|
||||
if self.framework == "pt":
|
||||
generated_sequence = generated_sequence.reshape(in_b, out_b // in_b, *generated_sequence.shape[1:])
|
||||
elif self.framework == "tf":
|
||||
generated_sequence = tf.reshape(generated_sequence, (in_b, out_b // in_b, *generated_sequence.shape[1:]))
|
||||
|
||||
instruction_text = model_inputs.pop("instruction_text")
|
||||
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "instruction_text": instruction_text}
|
||||
|
||||
def postprocess(self, model_outputs, response_key_token_id, end_key_token_id, return_instruction_text):
|
||||
sequence = model_outputs["generated_sequence"]
|
||||
def postprocess(self, model_outputs, response_key_token_id, end_key_token_id, return_full_text: bool = False):
|
||||
|
||||
generated_sequence = model_outputs["generated_sequence"][0]
|
||||
instruction_text = model_outputs["instruction_text"]
|
||||
|
||||
# The response will be set to this variable if we can identify it.
|
||||
decoded = None
|
||||
generated_sequence: List[List[int]] = generated_sequence.numpy().tolist()
|
||||
records = []
|
||||
for sequence in generated_sequence:
|
||||
|
||||
# If we have token IDs for the response and end, then we can find the tokens and only decode between them.
|
||||
if response_key_token_id and end_key_token_id:
|
||||
# Find where "### Response:" is first found in the generated tokens. Considering this is part of the
|
||||
# prompt, we should definitely find it. We will return the tokens found after this token.
|
||||
response_pos = None
|
||||
response_positions = np.where(sequence == response_key_token_id)[0]
|
||||
if len(response_positions) == 0:
|
||||
logger.warn(f"Could not find response key {response_key_token_id} in: {sequence}")
|
||||
else:
|
||||
response_pos = response_positions[0]
|
||||
# The response will be set to this variable if we can identify it.
|
||||
decoded = None
|
||||
|
||||
if response_pos:
|
||||
# Next find where "### End" is located. The model has been trained to end its responses with this
|
||||
# sequence (or actually, the token ID it maps to, since it is a special token). We may not find
|
||||
# this token, as the response could be truncated. If we don't find it then just return everything
|
||||
# to the end. Note that even though we set eos_token_id, we still see the this token at the end.
|
||||
end_pos = None
|
||||
end_positions = np.where(sequence == end_key_token_id)[0]
|
||||
if len(end_positions) > 0:
|
||||
end_pos = end_positions[0]
|
||||
# If we have token IDs for the response and end, then we can find the tokens and only decode between them.
|
||||
if response_key_token_id and end_key_token_id:
|
||||
# Find where "### Response:" is first found in the generated tokens. Considering this is part of the
|
||||
# prompt, we should definitely find it. We will return the tokens found after this token.
|
||||
try:
|
||||
response_pos = sequence.index(response_key_token_id)
|
||||
except ValueError:
|
||||
logger.warn(f"Could not find response key {response_key_token_id} in: {sequence}")
|
||||
response_pos = None
|
||||
|
||||
decoded = self.tokenizer.decode(sequence[response_pos + 1 : end_pos]).strip()
|
||||
else:
|
||||
# Otherwise we'll decode everything and use a regex to find the response and end.
|
||||
if response_pos:
|
||||
# Next find where "### End" is located. The model has been trained to end its responses with this
|
||||
# sequence (or actually, the token ID it maps to, since it is a special token). We may not find
|
||||
# this token, as the response could be truncated. If we don't find it then just return everything
|
||||
# to the end. Note that even though we set eos_token_id, we still see the this token at the end.
|
||||
try:
|
||||
end_pos = sequence.index(end_key_token_id)
|
||||
except ValueError:
|
||||
end_pos = None
|
||||
|
||||
fully_decoded = self.tokenizer.decode(sequence)
|
||||
decoded = self.tokenizer.decode(sequence[response_pos + 1 : end_pos]).strip()
|
||||
|
||||
# The response appears after "### Response:". The model has been trained to append "### End" at the
|
||||
# end.
|
||||
m = re.search(r"#+\s*Response:\s*(.+?)#+\s*End", fully_decoded, flags=re.DOTALL)
|
||||
if not decoded:
|
||||
# Otherwise we'll decode everything and use a regex to find the response and end.
|
||||
|
||||
fully_decoded = self.tokenizer.decode(sequence)
|
||||
|
||||
# The response appears after "### Response:". The model has been trained to append "### End" at the
|
||||
# end.
|
||||
m = re.search(r"#+\s*Response:\s*(.+?)#+\s*End", fully_decoded, flags=re.DOTALL)
|
||||
|
||||
if m:
|
||||
decoded = m.group(1).strip()
|
||||
else:
|
||||
# The model might not generate the "### End" sequence before reaching the max tokens. In this case,
|
||||
# return everything after "### Response:".
|
||||
m = re.search(r"#+\s*Response:\s*(.+)", fully_decoded, flags=re.DOTALL)
|
||||
if m:
|
||||
decoded = m.group(1).strip()
|
||||
else:
|
||||
logger.warn(f"Failed to find response in:\n{fully_decoded}")
|
||||
# The model might not generate the "### End" sequence before reaching the max tokens. In this case,
|
||||
# return everything after "### Response:".
|
||||
m = re.search(r"#+\s*Response:\s*(.+)", fully_decoded, flags=re.DOTALL)
|
||||
if m:
|
||||
decoded = m.group(1).strip()
|
||||
else:
|
||||
logger.warn(f"Failed to find response in:\n{fully_decoded}")
|
||||
|
||||
if return_instruction_text:
|
||||
return {"instruction_text": instruction_text, "generated_text": decoded}
|
||||
# If the full text is requested, then append the decoded text to the original instruction.
|
||||
# This technically isn't the full text, as we format the instruction in the prompt the model has been
|
||||
# trained on, but to the client it will appear to be the full text.
|
||||
if return_full_text:
|
||||
decoded = f"{instruction_text}\n{decoded}"
|
||||
|
||||
return decoded
|
||||
rec = {"generated_text": decoded}
|
||||
|
||||
records.append(rec)
|
||||
|
||||
return records
|
Loading…
x
Reference in New Issue
Block a user