d0aa7ea43d
Send attention_mask to device
212 lines
8.9 KiB
Python
212 lines
8.9 KiB
Python
import logging
|
|
import re
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
from transformers import Pipeline, PreTrainedTokenizer
|
|
|
|
from transformers.utils import is_tf_available
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
INSTRUCTION_KEY = "### Instruction:"
|
|
RESPONSE_KEY = "### Response:"
|
|
END_KEY = "### End"
|
|
INTRO_BLURB = (
|
|
"Below is an instruction that describes a task. Write a response that appropriately completes the request."
|
|
)
|
|
|
|
# This is the prompt that is used for generating responses using an already trained model. It ends with the response
|
|
# key, where the job of the model is to provide the completion that follows it (i.e. the response itself).
|
|
PROMPT_FOR_GENERATION_FORMAT = """{intro}
|
|
|
|
{instruction_key}
|
|
{instruction}
|
|
|
|
{response_key}
|
|
""".format(
|
|
intro=INTRO_BLURB,
|
|
instruction_key=INSTRUCTION_KEY,
|
|
instruction="{instruction}",
|
|
response_key=RESPONSE_KEY,
|
|
)
|
|
|
|
|
|
def get_special_token_id(tokenizer: PreTrainedTokenizer, key: str) -> int:
|
|
"""Gets the token ID for a given string that has been added to the tokenizer as a special token.
|
|
|
|
When training, we configure the tokenizer so that the sequences like "### Instruction:" and "### End" are
|
|
treated specially and converted to a single, new token. This retrieves the token ID each of these keys map to.
|
|
|
|
Args:
|
|
tokenizer (PreTrainedTokenizer): the tokenizer
|
|
key (str): the key to convert to a single token
|
|
|
|
Raises:
|
|
RuntimeError: if more than one ID was generated
|
|
|
|
Returns:
|
|
int: the token ID for the given key
|
|
"""
|
|
token_ids = tokenizer.encode(key)
|
|
if len(token_ids) > 1:
|
|
raise ValueError(f"Expected only a single token for '{key}' but found {token_ids}")
|
|
return token_ids[0]
|
|
|
|
|
|
class InstructionTextGenerationPipeline(Pipeline):
|
|
def __init__(
|
|
self, *args, do_sample: bool = True, max_new_tokens: int = 256, top_p: float = 0.92, top_k: int = 0, **kwargs
|
|
):
|
|
"""Initialize the pipeline
|
|
|
|
Args:
|
|
do_sample (bool, optional): Whether or not to use sampling. Defaults to True.
|
|
max_new_tokens (int, optional): Max new tokens after the prompt to generate. Defaults to 128.
|
|
top_p (float, optional): If set to float < 1, only the smallest set of most probable tokens with
|
|
probabilities that add up to top_p or higher are kept for generation. Defaults to 0.92.
|
|
top_k (int, optional): The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
|
Defaults to 0.
|
|
"""
|
|
super().__init__(*args, do_sample=do_sample, max_new_tokens=max_new_tokens, top_p=top_p, top_k=top_k,
|
|
**kwargs)
|
|
|
|
def _sanitize_parameters(self,
|
|
return_full_text: bool = None,
|
|
**generate_kwargs):
|
|
preprocess_params = {}
|
|
|
|
# newer versions of the tokenizer configure the response key as a special token. newer versions still may
|
|
# append a newline to yield a single token. find whatever token is configured for the response key.
|
|
tokenizer_response_key = next(
|
|
(token for token in self.tokenizer.additional_special_tokens if token.startswith(RESPONSE_KEY)), None
|
|
)
|
|
|
|
response_key_token_id = None
|
|
end_key_token_id = None
|
|
if tokenizer_response_key:
|
|
try:
|
|
response_key_token_id = get_special_token_id(self.tokenizer, tokenizer_response_key)
|
|
end_key_token_id = get_special_token_id(self.tokenizer, END_KEY)
|
|
|
|
# Ensure generation stops once it generates "### End"
|
|
generate_kwargs["eos_token_id"] = end_key_token_id
|
|
except ValueError:
|
|
pass
|
|
|
|
forward_params = generate_kwargs
|
|
postprocess_params = {
|
|
"response_key_token_id": response_key_token_id,
|
|
"end_key_token_id": end_key_token_id
|
|
}
|
|
|
|
if return_full_text is not None:
|
|
postprocess_params["return_full_text"] = return_full_text
|
|
|
|
return preprocess_params, forward_params, postprocess_params
|
|
|
|
def preprocess(self, instruction_text, **generate_kwargs):
|
|
prompt_text = PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction_text)
|
|
inputs = self.tokenizer(
|
|
prompt_text,
|
|
return_tensors="pt",
|
|
)
|
|
inputs["prompt_text"] = prompt_text
|
|
inputs["instruction_text"] = instruction_text
|
|
return inputs
|
|
|
|
def _forward(self, model_inputs, **generate_kwargs):
|
|
input_ids = model_inputs["input_ids"]
|
|
attention_mask = model_inputs.get("attention_mask", None)
|
|
|
|
if input_ids.shape[1] == 0:
|
|
input_ids = None
|
|
attention_mask = None
|
|
in_b = 1
|
|
else:
|
|
in_b = input_ids.shape[0]
|
|
|
|
generated_sequence = self.model.generate(
|
|
input_ids=input_ids.to(self.model.device),
|
|
attention_mask=attention_mask.to(self.model.device) if attention_mask is not None else None,
|
|
pad_token_id=self.tokenizer.pad_token_id,
|
|
**generate_kwargs,
|
|
)
|
|
|
|
out_b = generated_sequence.shape[0]
|
|
if self.framework == "pt":
|
|
generated_sequence = generated_sequence.reshape(in_b, out_b // in_b, *generated_sequence.shape[1:])
|
|
elif self.framework == "tf":
|
|
generated_sequence = tf.reshape(generated_sequence, (in_b, out_b // in_b, *generated_sequence.shape[1:]))
|
|
|
|
instruction_text = model_inputs.pop("instruction_text")
|
|
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "instruction_text": instruction_text}
|
|
|
|
def postprocess(self, model_outputs, response_key_token_id, end_key_token_id, return_full_text: bool = False):
|
|
|
|
generated_sequence = model_outputs["generated_sequence"][0]
|
|
instruction_text = model_outputs["instruction_text"]
|
|
|
|
generated_sequence: List[List[int]] = generated_sequence.numpy().tolist()
|
|
records = []
|
|
for sequence in generated_sequence:
|
|
|
|
# The response will be set to this variable if we can identify it.
|
|
decoded = None
|
|
|
|
# If we have token IDs for the response and end, then we can find the tokens and only decode between them.
|
|
if response_key_token_id and end_key_token_id:
|
|
# Find where "### Response:" is first found in the generated tokens. Considering this is part of the
|
|
# prompt, we should definitely find it. We will return the tokens found after this token.
|
|
try:
|
|
response_pos = sequence.index(response_key_token_id)
|
|
except ValueError:
|
|
logger.warn(f"Could not find response key {response_key_token_id} in: {sequence}")
|
|
response_pos = None
|
|
|
|
if response_pos:
|
|
# Next find where "### End" is located. The model has been trained to end its responses with this
|
|
# sequence (or actually, the token ID it maps to, since it is a special token). We may not find
|
|
# this token, as the response could be truncated. If we don't find it then just return everything
|
|
# to the end. Note that even though we set eos_token_id, we still see the this token at the end.
|
|
try:
|
|
end_pos = sequence.index(end_key_token_id)
|
|
except ValueError:
|
|
end_pos = None
|
|
|
|
decoded = self.tokenizer.decode(sequence[response_pos + 1 : end_pos]).strip()
|
|
|
|
if not decoded:
|
|
# Otherwise we'll decode everything and use a regex to find the response and end.
|
|
|
|
fully_decoded = self.tokenizer.decode(sequence)
|
|
|
|
# The response appears after "### Response:". The model has been trained to append "### End" at the
|
|
# end.
|
|
m = re.search(r"#+\s*Response:\s*(.+?)#+\s*End", fully_decoded, flags=re.DOTALL)
|
|
|
|
if m:
|
|
decoded = m.group(1).strip()
|
|
else:
|
|
# The model might not generate the "### End" sequence before reaching the max tokens. In this case,
|
|
# return everything after "### Response:".
|
|
m = re.search(r"#+\s*Response:\s*(.+)", fully_decoded, flags=re.DOTALL)
|
|
if m:
|
|
decoded = m.group(1).strip()
|
|
else:
|
|
logger.warn(f"Failed to find response in:\n{fully_decoded}")
|
|
|
|
# If the full text is requested, then append the decoded text to the original instruction.
|
|
# This technically isn't the full text, as we format the instruction in the prompt the model has been
|
|
# trained on, but to the client it will appear to be the full text.
|
|
if return_full_text:
|
|
decoded = f"{instruction_text}\n{decoded}"
|
|
|
|
rec = {"generated_text": decoded}
|
|
|
|
records.append(rec)
|
|
|
|
return records |