Upload 8 files
This commit is contained in:
parent
834565c23f
commit
cb2f453360
31
README.md
31
README.md
@ -33,6 +33,7 @@ To encourage the model to write more concise answers, you can also try the follo
|
||||
Instruct: Write a detailed analogy between mathematics and a lighthouse.
|
||||
Output: Mathematics is like a lighthouse. Just as a lighthouse guides ships safely to shore, mathematics provides a guiding light in the world of numbers and logic. It helps us navigate through complex problems and find solutions. Just as a lighthouse emits a steady beam of light, mathematics provides a consistent framework for reasoning and problem-solving. It illuminates the path to understanding and helps us make sense of the world around us.
|
||||
```
|
||||
|
||||
where the model generates the text after "Output:".
|
||||
|
||||
### Chat Format:
|
||||
@ -65,36 +66,19 @@ def print_prime(n):
|
||||
primes.append(num)
|
||||
print(primes)
|
||||
```
|
||||
|
||||
where the model generates the text after the comments.
|
||||
|
||||
**Notes:**
|
||||
|
||||
* Phi-2 is intended for QA, chat, and code purposes. The model-generated text/code should be treated as a starting point rather than a definitive solution for potential use cases. Users should be cautious when employing these models in their applications.
|
||||
|
||||
* Direct adoption for production tasks without evaluation is out of scope of this project. As a result, the Phi-2 model has not been tested to ensure that it performs adequately for any production-level application. Please refer to the limitation sections of this document for more details.
|
||||
* If you are using `transformers>=4.36.0`, always load the model with `trust_remote_code=True` to prevent side-effects.
|
||||
|
||||
* If you are using `transformers<4.37.0`, always load the model with `trust_remote_code=True` to prevent side-effects.
|
||||
|
||||
## Sample Code
|
||||
|
||||
There are four types of execution mode:
|
||||
|
||||
1. FP16 / Flash-Attention / CUDA:
|
||||
```python
|
||||
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", flash_attn=True, flash_rotary=True, fused_dense=True, device_map="cuda", trust_remote_code=True)
|
||||
```
|
||||
2. FP16 / CUDA:
|
||||
```python
|
||||
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype="auto", device_map="cuda", trust_remote_code=True)
|
||||
```
|
||||
3. FP32 / CUDA:
|
||||
```python
|
||||
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype=torch.float32, device_map="cuda", trust_remote_code=True)
|
||||
```
|
||||
4. FP32 / CPU:
|
||||
```python
|
||||
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", torch_dtype=torch.float32, device_map="cpu", trust_remote_code=True)
|
||||
```
|
||||
|
||||
To ensure the maximum compatibility, we recommend using the second execution mode (FP16 / CUDA), as follows:
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
@ -114,9 +98,6 @@ text = tokenizer.batch_decode(outputs)[0]
|
||||
print(text)
|
||||
```
|
||||
|
||||
**Remark:** In the generation function, our model currently does not support beam search (`num_beams > 1`).
|
||||
Furthermore, in the forward pass of the model, we currently do not support outputting hidden states or attention values, or using custom input embeddings.
|
||||
|
||||
## Limitations of Phi-2
|
||||
|
||||
* Generate Inaccurate Code and Facts: The model may produce incorrect code snippets and statements. Users should treat these outputs as suggestions or starting points, not as definitive or accurate solutions.
|
||||
|
34
config.json
34
config.json
@ -1,32 +1,34 @@
|
||||
{
|
||||
"_name_or_path": "microsoft/phi-2",
|
||||
"activation_function": "gelu_new",
|
||||
"architectures": [
|
||||
"PhiForCausalLM"
|
||||
],
|
||||
"attn_pdrop": 0.0,
|
||||
"auto_map": {
|
||||
"AutoConfig": "configuration_phi.PhiConfig",
|
||||
"AutoModelForCausalLM": "modeling_phi.PhiForCausalLM"
|
||||
},
|
||||
"attention_dropout": 0.0,
|
||||
"bos_token_id": null,
|
||||
"embd_pdrop": 0.0,
|
||||
"flash_attn": false,
|
||||
"flash_rotary": false,
|
||||
"fused_dense": false,
|
||||
"img_processor": null,
|
||||
"eos_token_id": null,
|
||||
"hidden_act": "gelu_new",
|
||||
"hidden_size": 2560,
|
||||
"initializer_range": 0.02,
|
||||
"layer_norm_epsilon": 1e-05,
|
||||
"model_type": "phi-msft",
|
||||
"n_embd": 2560,
|
||||
"n_head": 32,
|
||||
"n_head_kv": null,
|
||||
"n_inner": null,
|
||||
"n_layer": 32,
|
||||
"n_positions": 2048,
|
||||
"intermediate_size": 10240,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"max_position_embeddings": 2048,
|
||||
"model_type": "phi",
|
||||
"num_attention_heads": 32,
|
||||
"num_hidden_layers": 32,
|
||||
"num_key_value_heads": 32,
|
||||
"partial_rotary_factor": 0.4,
|
||||
"qk_layernorm": false,
|
||||
"resid_pdrop": 0.1,
|
||||
"rotary_dim": 32,
|
||||
"rope_scaling": null,
|
||||
"rope_theta": 10000.0,
|
||||
"tie_word_embeddings": false,
|
||||
"torch_dtype": "float16",
|
||||
"transformers_version": "4.35.2",
|
||||
"transformers_version": "4.37.0.dev0",
|
||||
"use_cache": true,
|
||||
"vocab_size": 51200
|
||||
}
|
||||
|
@ -1,62 +1,193 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
# coding=utf-8
|
||||
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from typing import Optional
|
||||
""" Phi model configuration"""
|
||||
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
PHI_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||
"microsoft/phi-2": "https://huggingface.co/microsoft/phi-2/resolve/main/config.json",
|
||||
}
|
||||
|
||||
|
||||
class PhiConfig(PretrainedConfig):
|
||||
"""Phi configuration."""
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the Phi
|
||||
[microsoft/phi-1](https://huggingface.co/microsoft/phi-1).
|
||||
|
||||
model_type = "phi-msft"
|
||||
attribute_map = {
|
||||
"max_position_embeddings": "n_positions",
|
||||
"hidden_size": "n_embd",
|
||||
"num_attention_heads": "n_head",
|
||||
"num_hidden_layers": "n_layer",
|
||||
}
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 51200):
|
||||
Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`PhiModel`].
|
||||
hidden_size (`int`, *optional*, defaults to 2048):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 8192):
|
||||
Dimension of the MLP representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 24):
|
||||
Number of hidden layers in the Transformer decoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||
Number of attention heads for each attention layer in the Transformer decoder.
|
||||
num_key_value_heads (`int`, *optional*):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details checkout [this
|
||||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
||||
`num_attention_heads`.
|
||||
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
||||
Dropout probability for mlp outputs.
|
||||
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the embeddings.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio after computing the attention scores.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
||||
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
|
||||
tokens.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
||||
The epsilon used by the rms normalization layers.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
||||
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||
Whether to tie weight embeddings
|
||||
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||||
The base period of the RoPE embeddings.
|
||||
rope_scaling (`Dict`, *optional*):
|
||||
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
||||
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
||||
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
||||
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
||||
these scaling strategies behave:
|
||||
https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
|
||||
is an experimental feature, subject to breaking API changes in future versions.
|
||||
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
|
||||
Percentage of the query and keys which will have rotary embedding.
|
||||
qk_layernorm (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to normalize the Queries and Keys after projecting the hidden states.
|
||||
bos_token_id (`int`, *optional*, defaults to 1):
|
||||
Denotes beginning of sequences token id.
|
||||
eos_token_id (`int`, *optional*, defaults to 2):
|
||||
Denotes end of sequences token id.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import PhiModel, PhiConfig
|
||||
|
||||
>>> # Initializing a Phi-1 style configuration
|
||||
>>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
|
||||
|
||||
>>> # Initializing a model from the configuration
|
||||
>>> model = PhiModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "phi"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int = 50304,
|
||||
n_positions: int = 2048,
|
||||
n_embd: int = 1024,
|
||||
n_layer: int = 20,
|
||||
n_inner: Optional[int] = None,
|
||||
n_head: int = 16,
|
||||
n_head_kv: Optional[int] = None,
|
||||
rotary_dim: Optional[int] = 32,
|
||||
activation_function: Optional[str] = "gelu_new",
|
||||
flash_attn: bool = False,
|
||||
flash_rotary: bool = False,
|
||||
fused_dense: bool = False,
|
||||
attn_pdrop: float = 0.0,
|
||||
embd_pdrop: float = 0.0,
|
||||
resid_pdrop: float = 0.0,
|
||||
layer_norm_epsilon: float = 1e-5,
|
||||
initializer_range: float = 0.02,
|
||||
tie_word_embeddings: bool = False,
|
||||
pad_vocab_size_multiple: int = 64,
|
||||
**kwargs
|
||||
) -> None:
|
||||
self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
|
||||
self.n_positions = n_positions
|
||||
self.n_embd = n_embd
|
||||
self.n_layer = n_layer
|
||||
self.n_inner = n_inner
|
||||
self.n_head = n_head
|
||||
self.n_head_kv = n_head_kv
|
||||
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
||||
self.activation_function = activation_function
|
||||
self.flash_attn = flash_attn
|
||||
self.flash_rotary = flash_rotary
|
||||
self.fused_dense = fused_dense
|
||||
self.attn_pdrop = attn_pdrop
|
||||
self.embd_pdrop = embd_pdrop
|
||||
self.resid_pdrop = resid_pdrop
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
self.initializer_range = initializer_range
|
||||
vocab_size=51200,
|
||||
hidden_size=2048,
|
||||
intermediate_size=8192,
|
||||
num_hidden_layers=24,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=None,
|
||||
resid_pdrop=0.0,
|
||||
embd_pdrop=0.0,
|
||||
attention_dropout=0.0,
|
||||
hidden_act="gelu_new",
|
||||
max_position_embeddings=2048,
|
||||
initializer_range=0.02,
|
||||
layer_norm_eps=1e-5,
|
||||
use_cache=True,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=10000.0,
|
||||
rope_scaling=None,
|
||||
partial_rotary_factor=0.5,
|
||||
qk_layernorm=False,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
|
||||
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.resid_pdrop = resid_pdrop
|
||||
self.embd_pdrop = embd_pdrop
|
||||
self.attention_dropout = attention_dropout
|
||||
self.hidden_act = hidden_act
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.initializer_range = initializer_range
|
||||
self.layer_norm_eps = layer_norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self.partial_rotary_factor = partial_rotary_factor
|
||||
self.qk_layernorm = qk_layernorm
|
||||
self._rope_scaling_validation()
|
||||
|
||||
super().__init__(
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
|
||||
def _rope_scaling_validation(self):
|
||||
"""
|
||||
Validate the `rope_scaling` configuration.
|
||||
"""
|
||||
if self.rope_scaling is None:
|
||||
return
|
||||
|
||||
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
||||
raise ValueError(
|
||||
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
||||
f"got {self.rope_scaling}"
|
||||
)
|
||||
rope_scaling_type = self.rope_scaling.get("type", None)
|
||||
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
||||
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
||||
raise ValueError(
|
||||
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
||||
)
|
||||
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
||||
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
||||
|
@ -1,4 +1,4 @@
|
||||
{
|
||||
"_from_model_config": true,
|
||||
"transformers_version": "4.35.2"
|
||||
"transformers_version": "4.37.0.dev0"
|
||||
}
|
||||
|
BIN
model-00001-of-00002.safetensors
(Stored with Git LFS)
BIN
model-00001-of-00002.safetensors
(Stored with Git LFS)
Binary file not shown.
BIN
model-00002-of-00002.safetensors
(Stored with Git LFS)
BIN
model-00002-of-00002.safetensors
(Stored with Git LFS)
Binary file not shown.
@ -3,330 +3,458 @@
|
||||
"total_size": 5559367680
|
||||
},
|
||||
"weight_map": {
|
||||
"lm_head.linear.bias": "model-00002-of-00002.safetensors",
|
||||
"lm_head.linear.weight": "model-00002-of-00002.safetensors",
|
||||
"lm_head.ln.bias": "model-00002-of-00002.safetensors",
|
||||
"lm_head.ln.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.embd.wte.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.30.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.30.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.30.mixer.Wqkv.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.30.mixer.Wqkv.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.30.mixer.out_proj.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.30.mixer.out_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.30.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.30.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.30.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.30.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.ln.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.ln.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.mixer.Wqkv.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.mixer.Wqkv.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.mixer.out_proj.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.mixer.out_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.4.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mlp.fc2.weight": "model-00001-of-00002.safetensors"
|
||||
"lm_head.bias": "model-00002-of-00002.safetensors",
|
||||
"lm_head.weight": "model-00002-of-00002.safetensors",
|
||||
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
||||
"model.final_layernorm.bias": "model-00002-of-00002.safetensors",
|
||||
"model.final_layernorm.weight": "model-00002-of-00002.safetensors",
|
||||
"model.layers.0.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.0.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.0.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.1.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.1.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.1.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.10.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.10.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.10.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.11.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.11.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.11.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.12.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.12.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.12.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.13.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.13.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.13.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.14.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.14.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.14.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.15.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.15.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.15.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.16.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.16.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.16.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.17.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.17.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.17.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.18.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.18.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.18.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.19.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.19.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.19.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.2.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.2.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.2.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.20.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.20.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.20.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.21.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.21.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.21.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.22.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.22.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.22.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.23.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.23.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.23.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.24.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.24.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.24.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.25.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.25.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.25.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.26.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.26.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.26.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.27.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.27.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.27.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.27.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.27.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.27.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.27.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.28.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.28.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.28.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.28.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.28.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.28.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.28.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.28.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.29.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.29.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.29.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.29.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.29.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.29.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.29.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.29.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.29.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.29.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.29.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.29.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.29.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.29.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.3.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.3.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.3.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.30.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
||||
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
||||
"model.layers.30.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
||||
"model.layers.30.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
||||
"model.layers.30.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
||||
"model.layers.30.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
||||
"model.layers.30.self_attn.dense.bias": "model-00002-of-00002.safetensors",
|
||||
"model.layers.30.self_attn.dense.weight": "model-00002-of-00002.safetensors",
|
||||
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
||||
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"model.layers.30.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.30.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
||||
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"model.layers.31.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
||||
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
||||
"model.layers.31.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
||||
"model.layers.31.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
||||
"model.layers.31.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
||||
"model.layers.31.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
||||
"model.layers.31.self_attn.dense.bias": "model-00002-of-00002.safetensors",
|
||||
"model.layers.31.self_attn.dense.weight": "model-00002-of-00002.safetensors",
|
||||
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
||||
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
||||
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
||||
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"model.layers.4.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.4.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.4.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.5.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.5.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.5.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.6.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.6.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.6.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.7.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.7.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.7.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.8.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.8.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.8.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.9.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.9.self_attn.dense.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.9.self_attn.dense.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors"
|
||||
}
|
||||
}
|
||||
|
2072
modeling_phi.py
2072
modeling_phi.py
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user