Upload PhiForCausalLM
This commit is contained in:
parent
3fee3716b6
commit
f6ba9c82af
32
config.json
Normal file
32
config.json
Normal file
@ -0,0 +1,32 @@
|
||||
{
|
||||
"_name_or_path": "/home/gderosa/.cache/huggingface/hub/models--mojanjp--phi2/snapshots/e74b3704fed862c23190b41c5756f4c22dd461b7",
|
||||
"activation_function": "gelu_new",
|
||||
"architectures": [
|
||||
"PhiForCausalLM"
|
||||
],
|
||||
"attn_pdrop": 0.0,
|
||||
"auto_map": {
|
||||
"AutoConfig": "configuration_phi.PhiConfig",
|
||||
"AutoModelForCausalLM": "modeling_phi.PhiForCausalLM"
|
||||
},
|
||||
"embd_pdrop": 0.0,
|
||||
"flash_attn": false,
|
||||
"flash_rotary": false,
|
||||
"fused_dense": false,
|
||||
"img_processor": null,
|
||||
"initializer_range": 0.02,
|
||||
"layer_norm_epsilon": 1e-05,
|
||||
"model_type": "phi",
|
||||
"n_embd": 2560,
|
||||
"n_head": 32,
|
||||
"n_head_kv": null,
|
||||
"n_inner": null,
|
||||
"n_layer": 32,
|
||||
"n_positions": 2048,
|
||||
"resid_pdrop": 0.1,
|
||||
"rotary_dim": 32,
|
||||
"tie_word_embeddings": false,
|
||||
"torch_dtype": "float16",
|
||||
"transformers_version": "4.35.2",
|
||||
"vocab_size": 51200
|
||||
}
|
62
configuration_phi.py
Normal file
62
configuration_phi.py
Normal file
@ -0,0 +1,62 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
|
||||
import math
|
||||
from typing import Optional
|
||||
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
|
||||
class PhiConfig(PretrainedConfig):
|
||||
"""Phi configuration."""
|
||||
|
||||
model_type = "phi"
|
||||
attribute_map = {
|
||||
"max_position_embeddings": "n_positions",
|
||||
"hidden_size": "n_embd",
|
||||
"num_attention_heads": "n_head",
|
||||
"num_hidden_layers": "n_layer",
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int = 50304,
|
||||
n_positions: int = 2048,
|
||||
n_embd: int = 1024,
|
||||
n_layer: int = 20,
|
||||
n_inner: Optional[int] = None,
|
||||
n_head: int = 16,
|
||||
n_head_kv: Optional[int] = None,
|
||||
rotary_dim: Optional[int] = 32,
|
||||
activation_function: Optional[str] = "gelu_new",
|
||||
flash_attn: bool = False,
|
||||
flash_rotary: bool = False,
|
||||
fused_dense: bool = False,
|
||||
attn_pdrop: float = 0.0,
|
||||
embd_pdrop: float = 0.0,
|
||||
resid_pdrop: float = 0.0,
|
||||
layer_norm_epsilon: float = 1e-5,
|
||||
initializer_range: float = 0.02,
|
||||
tie_word_embeddings: bool = False,
|
||||
pad_vocab_size_multiple: int = 64,
|
||||
**kwargs
|
||||
) -> None:
|
||||
self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
|
||||
self.n_positions = n_positions
|
||||
self.n_embd = n_embd
|
||||
self.n_layer = n_layer
|
||||
self.n_inner = n_inner
|
||||
self.n_head = n_head
|
||||
self.n_head_kv = n_head_kv
|
||||
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
||||
self.activation_function = activation_function
|
||||
self.flash_attn = flash_attn
|
||||
self.flash_rotary = flash_rotary
|
||||
self.fused_dense = fused_dense
|
||||
self.attn_pdrop = attn_pdrop
|
||||
self.embd_pdrop = embd_pdrop
|
||||
self.resid_pdrop = resid_pdrop
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
self.initializer_range = initializer_range
|
||||
|
||||
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
4
generation_config.json
Normal file
4
generation_config.json
Normal file
@ -0,0 +1,4 @@
|
||||
{
|
||||
"_from_model_config": true,
|
||||
"transformers_version": "4.35.2"
|
||||
}
|
BIN
model-00001-of-00002.safetensors
(Stored with Git LFS)
Normal file
BIN
model-00001-of-00002.safetensors
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
model-00002-of-00002.safetensors
(Stored with Git LFS)
Normal file
BIN
model-00002-of-00002.safetensors
(Stored with Git LFS)
Normal file
Binary file not shown.
332
model.safetensors.index.json
Normal file
332
model.safetensors.index.json
Normal file
@ -0,0 +1,332 @@
|
||||
{
|
||||
"metadata": {
|
||||
"total_size": 5559367680
|
||||
},
|
||||
"weight_map": {
|
||||
"lm_head.linear.bias": "model-00002-of-00002.safetensors",
|
||||
"lm_head.linear.weight": "model-00002-of-00002.safetensors",
|
||||
"lm_head.ln.bias": "model-00002-of-00002.safetensors",
|
||||
"lm_head.ln.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.embd.wte.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.27.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.28.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.29.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.30.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.30.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.30.mixer.Wqkv.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.30.mixer.Wqkv.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.30.mixer.out_proj.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.30.mixer.out_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.30.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.30.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.30.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.30.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.ln.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.ln.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.mixer.Wqkv.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.mixer.Wqkv.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.mixer.out_proj.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.mixer.out_proj.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.31.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
||||
"transformer.h.4.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.ln.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.ln.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mixer.Wqkv.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mixer.Wqkv.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mixer.out_proj.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mixer.out_proj.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
||||
"transformer.h.9.mlp.fc2.weight": "model-00001-of-00002.safetensors"
|
||||
}
|
||||
}
|
960
modeling_phi.py
Normal file
960
modeling_phi.py
Normal file
@ -0,0 +1,960 @@
|
||||
# Copyright (c) Microsoft Corporation.
|
||||
# Licensed under the MIT license.
|
||||
#
|
||||
# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
|
||||
# Licensed under the BSD 3-Clause License.
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from einops import rearrange, repeat
|
||||
from transformers import PretrainedConfig, PreTrainedModel
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
|
||||
from .configuration_phi import PhiConfig
|
||||
|
||||
try:
|
||||
from flash_attn.bert_padding import pad_input, unpad_input
|
||||
from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
|
||||
from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention
|
||||
from flash_attn.ops.fused_dense import FusedDense
|
||||
except:
|
||||
pad_input, unpad_input = None, None
|
||||
FlashRotaryEmbedding = None
|
||||
FlashSelfAttention, FlashCrossAttention = None, None
|
||||
FusedDense = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class InferenceParams:
|
||||
"""Inference parameters passed to model to efficiently calculate
|
||||
and store context during inference.
|
||||
|
||||
Reference:
|
||||
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
|
||||
|
||||
Args:
|
||||
max_seqlen: Maximum sequence length.
|
||||
max_batch_size: Maximum batch size.
|
||||
seqlen_offset: Sequence length offset.
|
||||
batch_size_offset: Batch size offset.
|
||||
key_value_memory_dict: Key value memory dictionary.
|
||||
lengths_per_sample: Lengths per sample.
|
||||
|
||||
"""
|
||||
|
||||
max_seqlen: int = field(metadata={"help": "Maximum sequence length."})
|
||||
|
||||
max_batch_size: int = field(metadata={"help": "Maximum batch size."})
|
||||
|
||||
seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
|
||||
|
||||
batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
|
||||
|
||||
key_value_memory_dict: Dict[str, Any] = field(
|
||||
default_factory=dict, metadata={"help": "Key value memory dictionary."}
|
||||
)
|
||||
|
||||
lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."})
|
||||
|
||||
|
||||
class Embedding(nn.Module):
|
||||
"""Token embedding with dropout."""
|
||||
|
||||
def __init__(self, config: PretrainedConfig) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
||||
self.drop = nn.Dropout(config.embd_pdrop)
|
||||
|
||||
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
|
||||
hidden_states = self.wte(input_ids)
|
||||
hidden_states = self.drop(hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
def _apply_rotary_emb(
|
||||
x: torch.FloatTensor,
|
||||
cos: torch.FloatTensor,
|
||||
sin: torch.FloatTensor,
|
||||
) -> torch.FloatTensor:
|
||||
_, seqlen, _, _ = x.shape
|
||||
_, rotary_dim = cos.shape
|
||||
rotary_dim *= 2
|
||||
|
||||
x_rot = x[:, :, :, :rotary_dim]
|
||||
x_pass = x[:, :, :, rotary_dim:]
|
||||
|
||||
x1, x2 = x_rot.chunk(2, dim=-1)
|
||||
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
||||
x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]
|
||||
|
||||
x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype)
|
||||
|
||||
return torch.cat([x_rot, x_pass], axis=-1)
|
||||
|
||||
|
||||
def _apply_rotary_emb_kv(
|
||||
kv: torch.FloatTensor,
|
||||
cos: torch.FloatTensor,
|
||||
sin: torch.FloatTensor,
|
||||
cos_k: Optional[torch.FloatTensor] = None,
|
||||
sin_k: Optional[torch.FloatTensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
_, seqlen, _, _, _ = kv.shape
|
||||
_, rotary_dim = cos.shape
|
||||
rotary_dim *= 2
|
||||
|
||||
k_rot = kv[:, :, 0, :, :rotary_dim]
|
||||
k_pass = kv[:, :, 0, :, rotary_dim:]
|
||||
|
||||
k1, k2 = k_rot.chunk(2, dim=-1)
|
||||
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
||||
k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]]
|
||||
|
||||
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype)
|
||||
|
||||
return torch.cat(
|
||||
[
|
||||
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
||||
kv[:, :, 1:2, :, :],
|
||||
],
|
||||
axis=2,
|
||||
)
|
||||
|
||||
|
||||
def _apply_rotary_emb_qkv(
|
||||
qkv: torch.FloatTensor,
|
||||
cos: torch.FloatTensor,
|
||||
sin: torch.FloatTensor,
|
||||
cos_k: Optional[torch.FloatTensor] = None,
|
||||
sin_k: Optional[torch.FloatTensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
_, seqlen, _, _, _ = qkv.shape
|
||||
_, rotary_dim = cos.shape
|
||||
rotary_dim *= 2
|
||||
|
||||
q_rot = qkv[:, :, 0, :, :rotary_dim]
|
||||
q_pass = qkv[:, :, 0, :, rotary_dim:]
|
||||
|
||||
k_rot = qkv[:, :, 1, :, :rotary_dim]
|
||||
k_pass = qkv[:, :, 1, :, rotary_dim:]
|
||||
|
||||
q1, q2 = q_rot.chunk(2, dim=-1)
|
||||
k1, k2 = k_rot.chunk(2, dim=-1)
|
||||
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
||||
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
|
||||
|
||||
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
|
||||
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
|
||||
|
||||
return torch.cat(
|
||||
[
|
||||
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
|
||||
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
||||
qkv[:, :, 2:3, :, :],
|
||||
],
|
||||
axis=2,
|
||||
)
|
||||
|
||||
|
||||
class RotaryEmbedding(nn.Module):
|
||||
"""Rotary positional embedding (RoPE).
|
||||
|
||||
Reference:
|
||||
RoFormer: Enhanced Transformer with Rotary Position Embedding.
|
||||
https://arxiv.org/pdf/2104.09864.pdf.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
base: int = 10000,
|
||||
scale_base: Optional[float] = None,
|
||||
pos_idx_in_fp32: bool = True,
|
||||
max_position_embeddings: int = 2048,
|
||||
device: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
if scale_base is not None:
|
||||
raise NotImplementedError
|
||||
|
||||
self.dim = dim
|
||||
self.base = float(base)
|
||||
self.scale_base = scale_base
|
||||
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.device = device
|
||||
|
||||
# Generate and save the inverse frequency buffer (non-trainable)
|
||||
inv_freq = self._compute_inv_freq(device)
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||||
|
||||
# Generate and save the scale buffer (non-trainable)
|
||||
scale = (
|
||||
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
||||
if scale_base is not None
|
||||
else None
|
||||
)
|
||||
self.register_buffer("scale", scale, persistent=False)
|
||||
|
||||
# Initialize cached attributes since ONNX can't rely on dynamic initialization
|
||||
self._update_cos_sin_cache(max_position_embeddings, device=device, dtype=torch.float32)
|
||||
|
||||
def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
|
||||
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
||||
|
||||
def _update_cos_sin_cache(
|
||||
self,
|
||||
seqlen: int,
|
||||
device: Optional[str] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
) -> None:
|
||||
self._seq_len_cached = seqlen
|
||||
|
||||
# fp32 is preferred since the output of `torch.arange` can be quite large
|
||||
# and bf16 would lose a lot of precision
|
||||
if self.pos_idx_in_fp32:
|
||||
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
||||
if self.inv_freq.dtype != torch.float32:
|
||||
inv_freq = self._compute_inv_freq(device=device)
|
||||
else:
|
||||
inv_freq = self.inv_freq
|
||||
else:
|
||||
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
||||
inv_freq = self.inv_freq
|
||||
|
||||
# `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP
|
||||
freqs = torch.outer(t, inv_freq)
|
||||
if self.scale is None:
|
||||
self._cos_cached = torch.cos(freqs).to(dtype)
|
||||
self._sin_cached = torch.sin(freqs).to(dtype)
|
||||
else:
|
||||
power = (
|
||||
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
|
||||
) / self.scale_base
|
||||
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
||||
|
||||
# Force the scale multiplication to happen in fp32
|
||||
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
||||
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
||||
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
||||
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
qkv: torch.Tensor,
|
||||
kv: Optional[torch.Tensor] = None,
|
||||
seqlen_offset: int = 0,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
if (
|
||||
self._seq_len_cached < qkv.shape[1] + seqlen_offset
|
||||
or self._cos_cached.device != qkv.device
|
||||
or self._cos_cached.dtype != qkv.dtype
|
||||
or (self.training and self._cos_cached.is_inference())
|
||||
):
|
||||
self._update_cos_sin_cache(qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
|
||||
|
||||
if kv is None:
|
||||
return _apply_rotary_emb_qkv(
|
||||
qkv,
|
||||
self._cos_cached[seqlen_offset:],
|
||||
self._sin_cached[seqlen_offset:],
|
||||
)
|
||||
else:
|
||||
q = _apply_rotary_emb(
|
||||
qkv,
|
||||
self._cos_cached[seqlen_offset:],
|
||||
self._sin_cached[seqlen_offset:],
|
||||
)
|
||||
kv = _apply_rotary_emb_kv(
|
||||
kv,
|
||||
self._cos_cached[seqlen_offset:],
|
||||
self._sin_cached[seqlen_offset:],
|
||||
)
|
||||
|
||||
return q, kv
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
"""Multi-Layer Perceptron.
|
||||
|
||||
Reference:
|
||||
Attention Is All You Need.
|
||||
https://arxiv.org/pdf/1706.03762.pdf.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
n_inner: Optional[int] = None,
|
||||
act_fn: Optional[str] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
act_fn = config.activation_function if act_fn is None else act_fn
|
||||
|
||||
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
||||
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
||||
|
||||
self.fc1 = nn.Linear(config.n_embd, n_inner)
|
||||
self.fc2 = nn.Linear(n_inner, config.n_embd)
|
||||
self.act = ACT2FN[act_fn]
|
||||
|
||||
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
||||
hidden_states = self.fc1(hidden_states)
|
||||
hidden_states = self.act(hidden_states)
|
||||
hidden_states = self.fc2(hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class SelfAttention(nn.Module):
|
||||
"""Self-attention layer (compatible with PyTorch).
|
||||
|
||||
Reference:
|
||||
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
causal: bool = True,
|
||||
softmax_scale: Optional[float] = None,
|
||||
attention_dropout: float = 0.0,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.causal = causal
|
||||
self.softmax_scale = softmax_scale
|
||||
self.drop = nn.Dropout(attention_dropout)
|
||||
|
||||
@torch.autocast("cpu", enabled=False)
|
||||
@torch.autocast("cuda", enabled=False)
|
||||
def forward(
|
||||
self,
|
||||
qkv: torch.FloatTensor,
|
||||
causal: bool = None,
|
||||
key_padding_mask: Optional[torch.BoolTensor] = None,
|
||||
**kwargs,
|
||||
) -> torch.FloatTensor:
|
||||
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
||||
q, k, v = qkv.unbind(dim=2)
|
||||
|
||||
q = q.to(torch.float32)
|
||||
k = k.to(torch.float32)
|
||||
|
||||
causal = self.causal if causal is None else causal
|
||||
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
||||
|
||||
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
|
||||
# using float16, which might lead to overflow
|
||||
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
||||
|
||||
if key_padding_mask is not None:
|
||||
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device)
|
||||
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
||||
|
||||
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
||||
|
||||
if causal:
|
||||
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
|
||||
scores = scores + causal_mask.to(dtype=scores.dtype)
|
||||
|
||||
attention = torch.softmax(scores, dim=-1).to(v.dtype)
|
||||
attention = self.drop(attention)
|
||||
|
||||
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
"""Cross-attention layer (compatible with PyTorch).
|
||||
|
||||
Reference:
|
||||
https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
causal: bool = True,
|
||||
softmax_scale: Optional[float] = None,
|
||||
attention_dropout: float = 0.0,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.causal = causal
|
||||
self.softmax_scale = softmax_scale
|
||||
self.drop = nn.Dropout(attention_dropout)
|
||||
|
||||
@torch.autocast("cpu", enabled=False)
|
||||
@torch.autocast("cuda", enabled=False)
|
||||
def forward(
|
||||
self,
|
||||
q: torch.FloatTensor,
|
||||
kv: torch.FloatTensor,
|
||||
causal: bool = None,
|
||||
key_padding_mask: Optional[torch.BoolTensor] = None,
|
||||
**kwargs,
|
||||
) -> torch.FloatTensor:
|
||||
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
||||
seqlen_k = kv.shape[1]
|
||||
|
||||
if kv.shape[3] != q.shape[2]:
|
||||
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
|
||||
k, v = kv.unbind(dim=2)
|
||||
|
||||
q = q.to(torch.float32)
|
||||
k = k.to(torch.float32)
|
||||
|
||||
causal = self.causal if causal is None else causal
|
||||
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
||||
|
||||
# Autocast is manually disabled to avoid `torch.einsum` performing the operation
|
||||
# using float16, which might lead to overflow
|
||||
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
||||
|
||||
if key_padding_mask is not None:
|
||||
padding_mask = torch.full(
|
||||
(batch_size, seqlen_k),
|
||||
-10000.0,
|
||||
dtype=scores.dtype,
|
||||
device=scores.device,
|
||||
)
|
||||
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
||||
|
||||
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
||||
|
||||
if causal:
|
||||
rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1")
|
||||
cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
|
||||
causal_mask = cols > rows + seqlen_k - seqlen_q
|
||||
|
||||
scores = scores.masked_fill(causal_mask, -10000.0)
|
||||
|
||||
attention = torch.softmax(scores, dim=-1).to(v.dtype)
|
||||
attention = self.drop(attention)
|
||||
|
||||
output = torch.einsum("bhts,bshd->bthd", attention, v)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def _find_mha_dims(
|
||||
config: PretrainedConfig,
|
||||
n_head: Optional[int] = None,
|
||||
n_head_kv: Optional[int] = None,
|
||||
head_dim: Optional[int] = None,
|
||||
) -> Tuple[int, int]:
|
||||
if n_head is None and head_dim is None:
|
||||
head_dim = config.n_embd // config.n_head
|
||||
n_head = config.n_head
|
||||
elif n_head is None or head_dim is None:
|
||||
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
|
||||
|
||||
if n_head_kv is None:
|
||||
n_head_kv = getattr(config, "n_head_kv", None) or n_head
|
||||
|
||||
return n_head, n_head_kv, head_dim
|
||||
|
||||
|
||||
def _update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor:
|
||||
num_heads, head_dim = kv.shape[-2:]
|
||||
|
||||
if layer_idx not in inference_params.key_value_memory_dict:
|
||||
inference_params.key_value_memory_dict[layer_idx] = torch.empty(
|
||||
inference_params.max_batch_size,
|
||||
inference_params.max_seqlen,
|
||||
2,
|
||||
num_heads,
|
||||
head_dim,
|
||||
dtype=kv.dtype,
|
||||
device=kv.device,
|
||||
)
|
||||
|
||||
batch_start = inference_params.batch_size_offset
|
||||
batch_end = batch_start + kv.shape[0]
|
||||
|
||||
sequence_start = inference_params.seqlen_offset
|
||||
sequence_end = sequence_start + kv.shape[1]
|
||||
|
||||
# When the current sequence length is equal to or larger than the maximum sequence length,
|
||||
# we need to concatenate the current `kv` with the cached `kv` to expand its length
|
||||
if sequence_end >= inference_params.max_seqlen:
|
||||
inference_params.key_value_memory_dict[layer_idx] = torch.concatenate((inference_params.key_value_memory_dict[layer_idx], kv), dim=1)
|
||||
|
||||
inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
||||
kv = inference_params.key_value_memory_dict[layer_idx][batch_start:batch_end, :sequence_end, ...]
|
||||
|
||||
return kv
|
||||
|
||||
|
||||
class MHA(nn.Module):
|
||||
"""Multi-head attention layer."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
device: Optional[str] = None,
|
||||
rotary_dim: Optional[int] = None,
|
||||
rotary_base: float = 10000.0,
|
||||
rotary_scale_base: Optional[float] = None,
|
||||
n_head: Optional[int] = None,
|
||||
n_head_kv: Optional[int] = None,
|
||||
head_dim: Optional[int] = None,
|
||||
bias: bool = True,
|
||||
causal: bool = True,
|
||||
softmax_scale: Optional[float] = None,
|
||||
layer_idx: Optional[int] = None,
|
||||
return_residual: bool = False,
|
||||
checkpointing: bool = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
# Rotary embedding
|
||||
self.rotary_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
|
||||
if self.rotary_dim > 0:
|
||||
rotary_cls = FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding
|
||||
if rotary_cls is None:
|
||||
rotary_cls = RotaryEmbedding
|
||||
|
||||
rotary_kwargs = {}
|
||||
if rotary_cls is RotaryEmbedding:
|
||||
rotary_kwargs["max_position_embeddings"] = config.n_positions
|
||||
|
||||
self.rotary_emb = rotary_cls(
|
||||
self.rotary_dim,
|
||||
base=rotary_base,
|
||||
scale_base=rotary_scale_base,
|
||||
device=device,
|
||||
**rotary_kwargs,
|
||||
)
|
||||
|
||||
# MLP
|
||||
self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
|
||||
config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim
|
||||
)
|
||||
op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
|
||||
hidden_size = config.n_embd
|
||||
|
||||
linear_cls = FusedDense if config.fused_dense else nn.Linear
|
||||
if linear_cls is None:
|
||||
linear_cls = nn.Linear
|
||||
|
||||
self.Wqkv = linear_cls(hidden_size, op_size, bias=bias, device=device, dtype=dtype)
|
||||
self.out_proj = linear_cls(hidden_size, hidden_size, bias=bias, device=device, dtype=dtype)
|
||||
|
||||
# Attention
|
||||
attn_cls = FlashSelfAttention if config.flash_attn else SelfAttention
|
||||
if attn_cls is None:
|
||||
attn_cls = SelfAttention
|
||||
|
||||
cross_attn_cls = FlashCrossAttention if config.flash_attn else CrossAttention
|
||||
if cross_attn_cls is None:
|
||||
cross_attn_cls = CrossAttention
|
||||
|
||||
self.inner_attn = attn_cls(
|
||||
causal=causal,
|
||||
softmax_scale=softmax_scale,
|
||||
attention_dropout=config.attn_pdrop,
|
||||
)
|
||||
self.inner_cross_attn = cross_attn_cls(
|
||||
causal=causal,
|
||||
softmax_scale=softmax_scale,
|
||||
attention_dropout=config.attn_pdrop,
|
||||
)
|
||||
|
||||
self.flash_attn = config.flash_attn and attn_cls is FlashSelfAttention
|
||||
self.layer_idx = layer_idx
|
||||
self.return_residual = return_residual
|
||||
self.checkpointing = checkpointing
|
||||
|
||||
def _forward_self_attn(
|
||||
self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
|
||||
) -> torch.FloatTensor:
|
||||
qkv = self.Wqkv(x)
|
||||
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
||||
|
||||
if self.rotary_dim > 0:
|
||||
qkv = self.rotary_emb(qkv)
|
||||
|
||||
if self.flash_attn:
|
||||
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
||||
|
||||
cu_seqlens, max_seqlen = None, None
|
||||
if key_padding_mask is not None:
|
||||
# If `key_padding_mask` is supplied, we need to unpad the input and retrieve
|
||||
# the `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
|
||||
qkv, indices, cu_seqlens, max_seqlen = unpad_input(qkv, key_padding_mask)
|
||||
|
||||
if self.checkpointing:
|
||||
attn_output = torch.utils.checkpoint.checkpoint(
|
||||
self.inner_attn, qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
|
||||
)
|
||||
else:
|
||||
attn_output = self.inner_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen).to(qkv.device)
|
||||
|
||||
# If `key_padding_mask` is supplied, we need to pad the output back to the original shape
|
||||
return pad_input(attn_output, indices, batch_size, seqlen) if key_padding_mask is not None else attn_output
|
||||
|
||||
if self.checkpointing:
|
||||
return torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, key_padding_mask=key_padding_mask)
|
||||
|
||||
return self.inner_attn(qkv, key_padding_mask=key_padding_mask)
|
||||
|
||||
def _forward_cross_attn(
|
||||
self,
|
||||
x: torch.FloatTensor,
|
||||
past_key_values: Optional[InferenceParams],
|
||||
key_padding_mask: Optional[torch.BoolTensor],
|
||||
) -> torch.FloatTensor:
|
||||
batch_size = x.shape[0]
|
||||
|
||||
qkv = self.Wqkv(x)
|
||||
|
||||
q = qkv[..., : self.n_head * self.head_dim]
|
||||
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
|
||||
|
||||
kv = qkv[..., self.n_head * self.head_dim :]
|
||||
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
|
||||
|
||||
seqlen_offset = past_key_values.seqlen_offset if past_key_values is not None else 0
|
||||
causal = None if seqlen_offset == 0 else False
|
||||
if self.rotary_dim > 0:
|
||||
q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
|
||||
|
||||
if past_key_values is not None:
|
||||
kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
|
||||
|
||||
if self.flash_attn:
|
||||
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
||||
seqlen_k = kv.shape[1]
|
||||
|
||||
cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k = (
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
)
|
||||
if key_padding_mask is not None:
|
||||
kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask)
|
||||
|
||||
if seqlen_q == 1:
|
||||
key_padding_mask = torch.ones(batch_size, 1, device=q.device)
|
||||
elif seqlen_q != seqlen_k:
|
||||
key_padding_mask = key_padding_mask[:, -seqlen_q:]
|
||||
|
||||
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, key_padding_mask)
|
||||
|
||||
if self.checkpointing:
|
||||
attn_output = torch.utils.checkpoint.checkpoint(
|
||||
self.inner_cross_attn,
|
||||
q,
|
||||
kv,
|
||||
causal=causal,
|
||||
cu_seqlens=cu_seqlens_q,
|
||||
max_seqlen=max_seqlen_q,
|
||||
cu_seqlens_k=cu_seqlens_k,
|
||||
max_seqlen_k=max_seqlen_k,
|
||||
)
|
||||
else:
|
||||
attn_output = self.inner_cross_attn(
|
||||
q,
|
||||
kv,
|
||||
causal=causal,
|
||||
cu_seqlens=cu_seqlens_q,
|
||||
max_seqlen=max_seqlen_q,
|
||||
cu_seqlens_k=cu_seqlens_k,
|
||||
max_seqlen_k=max_seqlen_k,
|
||||
)
|
||||
|
||||
return (
|
||||
pad_input(attn_output, indices_q, batch_size, max_seqlen_q)
|
||||
if key_padding_mask is not None
|
||||
else attn_output
|
||||
)
|
||||
|
||||
if self.checkpointing:
|
||||
return torch.utils.checkpoint.checkpoint(
|
||||
self.inner_cross_attn,
|
||||
q,
|
||||
kv,
|
||||
key_padding_mask=key_padding_mask,
|
||||
causal=causal,
|
||||
)
|
||||
|
||||
return self.inner_cross_attn(q, kv, key_padding_mask=key_padding_mask, causal=causal)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.FloatTensor,
|
||||
past_key_values: Optional[InferenceParams] = None,
|
||||
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
||||
if attention_mask is not None:
|
||||
attention_mask = attention_mask.bool()
|
||||
else:
|
||||
attention_mask = None
|
||||
|
||||
# MHA
|
||||
if self.n_head == self.n_head_kv:
|
||||
if past_key_values is None:
|
||||
# If `past_key_values` are not supplied, we run self-attention
|
||||
attn_output = self._forward_self_attn(x, attention_mask)
|
||||
else:
|
||||
# If `past_key_values` are supplied, it means that we might have cached values and
|
||||
# could take advantage of cross-attention
|
||||
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
|
||||
# MQA / GQA
|
||||
else:
|
||||
# Regardless of `past_key_values` being supplied or not, it always use cross-attention
|
||||
# because `q` and `kv` lengths might be different
|
||||
attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
|
||||
|
||||
output = rearrange(attn_output, "... h d -> ... (h d)")
|
||||
output = self.out_proj(output)
|
||||
|
||||
return output if not self.return_residual else (output, x)
|
||||
|
||||
|
||||
class ParallelBlock(nn.Module):
|
||||
"""Parallel block.
|
||||
|
||||
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
block_idx: Optional[int] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
||||
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
||||
self.block_idx = block_idx
|
||||
|
||||
self.mixer = MHA(config, layer_idx=block_idx)
|
||||
self.mlp = MLP(config)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
||||
attention_mask: Optional[torch.BoolTensor] = None,
|
||||
**kwargs,
|
||||
) -> torch.FloatTensor:
|
||||
residual = hidden_states
|
||||
hidden_states = self.ln(hidden_states)
|
||||
|
||||
attn_outputs = self.mixer(
|
||||
hidden_states,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
if isinstance(attn_outputs, tuple):
|
||||
attn_outputs = attn_outputs[0]
|
||||
|
||||
attn_outputs = self.resid_dropout(attn_outputs)
|
||||
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
|
||||
|
||||
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class CausalLMHead(nn.Module):
|
||||
"""Causal Language Modeling head.
|
||||
|
||||
Reference:
|
||||
Improving Language Understanding by Generative Pre-Training.
|
||||
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, config: PretrainedConfig) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
||||
self.linear = nn.Linear(config.n_embd, config.vocab_size)
|
||||
|
||||
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
||||
hidden_states = self.ln(hidden_states)
|
||||
logits = self.linear(hidden_states).to(torch.float32)
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
class CausalLMLoss(nn.Module):
|
||||
"""Causal Language Modeling loss.
|
||||
|
||||
Reference:
|
||||
Improving Language Understanding by Generative Pre-Training.
|
||||
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, shift_labels: bool = True) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.shift_labels = shift_labels
|
||||
self.loss_fct = nn.CrossEntropyLoss()
|
||||
|
||||
def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor:
|
||||
if self.shift_labels:
|
||||
logits = logits[..., :-1, :].contiguous()
|
||||
labels = labels[..., 1:].contiguous()
|
||||
|
||||
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
class PhiPreTrainedModel(PreTrainedModel):
|
||||
"""Phi pre-trained model."""
|
||||
|
||||
config_class = PhiConfig
|
||||
base_model_prefix = "transformer"
|
||||
supports_gradient_checkpointing = False
|
||||
_no_split_modules = ["ParallelBlock"]
|
||||
|
||||
def __init__(self, *inputs, **kwargs) -> None:
|
||||
super().__init__(*inputs, **kwargs)
|
||||
|
||||
def _init_weights(self, module: nn.Module) -> None:
|
||||
if isinstance(module, (nn.Linear,)):
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.Embedding):
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
if module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self,
|
||||
input_ids: torch.LongTensor,
|
||||
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
||||
attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
|
||||
**kwargs,
|
||||
) -> Dict[str, Any]:
|
||||
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
|
||||
past_key_values = InferenceParams(
|
||||
max_seqlen=self.config.n_positions,
|
||||
max_batch_size=input_ids.shape[0],
|
||||
seqlen_offset=0,
|
||||
batch_size_offset=0,
|
||||
key_value_memory_dict={},
|
||||
lengths_per_sample=None,
|
||||
)
|
||||
else:
|
||||
# Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
|
||||
past_key_values.seqlen_offset = input_ids.shape[1] - 1
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"past_key_values": past_key_values,
|
||||
"attention_mask": attention_mask,
|
||||
}
|
||||
|
||||
|
||||
class PhiModel(PhiPreTrainedModel):
|
||||
"""Phi model."""
|
||||
|
||||
_keys_to_ignore_on_load_missing = [""]
|
||||
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
|
||||
|
||||
def __init__(self, config: PhiConfig) -> None:
|
||||
super().__init__(config)
|
||||
|
||||
self.embd = Embedding(config)
|
||||
self.h = nn.ModuleList([ParallelBlock(config, block_idx=i) for i in range(config.n_layer)])
|
||||
self.gradient_checkpointing = False
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self) -> nn.Embedding:
|
||||
return self.embd.wte
|
||||
|
||||
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
||||
self.embd.wte = new_embeddings
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor,
|
||||
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
||||
attention_mask: Optional[torch.BoolTensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
hidden_states = self.embd(input_ids)
|
||||
|
||||
for layer in self.h:
|
||||
hidden_states = layer(
|
||||
hidden_states,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class PhiForCausalLM(PhiPreTrainedModel):
|
||||
"""Phi for Causal Language Modeling."""
|
||||
|
||||
_keys_to_ignore_on_load_missing = [""]
|
||||
_keys_to_ignore_on_load_unexpected = [r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
|
||||
|
||||
def __init__(self, config: PhiConfig) -> None:
|
||||
super().__init__(config)
|
||||
|
||||
self.transformer = PhiModel(config)
|
||||
self.lm_head = CausalLMHead(config)
|
||||
self.loss = CausalLMLoss()
|
||||
|
||||
self.post_init()
|
||||
|
||||
def get_output_embeddings(self) -> nn.Linear:
|
||||
return self.lm_head.linear
|
||||
|
||||
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
|
||||
self.lm_head.linear = new_embeddings
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor,
|
||||
past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
|
||||
attention_mask: Optional[torch.BoolTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
**kwargs,
|
||||
) -> CausalLMOutputWithPast:
|
||||
hidden_states = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask)
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
loss = self.loss(lm_logits, labels)
|
||||
|
||||
return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)
|
Loading…
x
Reference in New Issue
Block a user