2022-01-04 08:25:29 +00:00
---
tags:
2022-07-01 07:38:36 +00:00
- image-to-text
2022-01-04 08:25:29 +00:00
- image-captioning
license: apache-2.0
2022-09-19 07:40:32 +00:00
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg
example_title: Savanna
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
example_title: Football Match
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
example_title: Airport
2022-01-04 08:25:29 +00:00
---
# nlpconnect/vit-gpt2-image-captioning
2022-11-22 04:40:14 +00:00
This is an image captioning model trained by @ydshieh in [flax ](https://github.com/huggingface/transformers/tree/main/examples/flax/image-captioning ) this is pytorch version of [this ](https://huggingface.co/ydshieh/vit-gpt2-coco-en-ckpts ).
# The Illustrated Image Captioning using transformers
![](https://ankur3107.github.io/assets/images/vision-encoder-decoder.png)
2022-12-01 04:25:13 +00:00
* https://ankur3107.github.io/blogs/the-illustrated-image-captioning-using-transformers/
2022-01-04 08:25:29 +00:00
# Sample running code
```python
2023-02-27 15:00:09 +00:00
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
2022-11-27 08:18:13 +00:00
import torch
from PIL import Image
2022-01-04 08:25:29 +00:00
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
2023-02-27 15:00:09 +00:00
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
2022-01-04 08:25:29 +00:00
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def predict_step(image_paths):
images = []
for image_path in image_paths:
i_image = Image.open(image_path)
if i_image.mode != "RGB":
i_image = i_image.convert(mode="RGB")
images.append(i_image)
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
2022-10-21 05:10:58 +00:00
predict_step(['doctor.e16ba4e4.jpg']) # ['a woman in a hospital bed with a woman in a hospital bed']
2022-01-04 08:25:29 +00:00
```
2022-11-22 04:40:14 +00:00
# Sample running code using transformers pipeline
```python
from transformers import pipeline
image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
image_to_text("https://ankur3107.github.io/assets/images/image-captioning-example.png")
# [{'generated_text': 'a soccer game with a player jumping to catch the ball '}]
```
# Contact for any help
2022-12-01 04:27:20 +00:00
* https://huggingface.co/ankur310794
* https://twitter.com/ankur310794
* http://github.com/ankur3107
* https://www.linkedin.com/in/ankur310794