979 lines
39 KiB
Python
979 lines
39 KiB
Python
|
import math
|
||
|
from dataclasses import dataclass
|
||
|
import os
|
||
|
from typing import Dict, Optional, Tuple, Union
|
||
|
from einops import rearrange
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||
|
from diffusers.models.modeling_utils import ModelMixin
|
||
|
from diffusers.models.modeling_outputs import AutoencoderKLOutput
|
||
|
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
|
||
|
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
|
||
|
from diffusers.models.attention_processor import Attention
|
||
|
from diffusers.models.resnet import ResnetBlock2D
|
||
|
from diffusers.models.upsampling import Upsample2D
|
||
|
from diffusers.models.downsampling import Downsample2D
|
||
|
from diffusers.models.attention_processor import SpatialNorm
|
||
|
|
||
|
|
||
|
class TemporalConvBlock(nn.Module):
|
||
|
"""
|
||
|
Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from:
|
||
|
https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016
|
||
|
"""
|
||
|
|
||
|
def __init__(self, in_dim, out_dim=None, dropout=0.0, up_sample=False, down_sample=False, spa_stride=1):
|
||
|
super().__init__()
|
||
|
out_dim = out_dim or in_dim
|
||
|
self.in_dim = in_dim
|
||
|
self.out_dim = out_dim
|
||
|
spa_pad = int((spa_stride-1)*0.5)
|
||
|
temp_pad = 0
|
||
|
self.temp_pad = temp_pad
|
||
|
|
||
|
if down_sample:
|
||
|
self.conv1 = nn.Sequential(
|
||
|
nn.GroupNorm(32, in_dim),
|
||
|
nn.SiLU(),
|
||
|
nn.Conv3d(in_dim, out_dim, (2, spa_stride, spa_stride), stride=(2,1,1), padding=(0, spa_pad, spa_pad))
|
||
|
)
|
||
|
elif up_sample:
|
||
|
self.conv1 = nn.Sequential(
|
||
|
nn.GroupNorm(32, in_dim),
|
||
|
nn.SiLU(),
|
||
|
nn.Conv3d(in_dim, out_dim*2, (1, spa_stride, spa_stride), padding=(0, spa_pad, spa_pad))
|
||
|
)
|
||
|
else:
|
||
|
self.conv1 = nn.Sequential(
|
||
|
nn.GroupNorm(32, in_dim),
|
||
|
nn.SiLU(),
|
||
|
nn.Conv3d(in_dim, out_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad))
|
||
|
)
|
||
|
self.conv2 = nn.Sequential(
|
||
|
nn.GroupNorm(32, out_dim),
|
||
|
nn.SiLU(),
|
||
|
nn.Dropout(dropout),
|
||
|
nn.Conv3d(out_dim, in_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad)),
|
||
|
)
|
||
|
self.conv3 = nn.Sequential(
|
||
|
nn.GroupNorm(32, out_dim),
|
||
|
nn.SiLU(),
|
||
|
nn.Dropout(dropout),
|
||
|
nn.Conv3d(out_dim, in_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad)),
|
||
|
)
|
||
|
self.conv4 = nn.Sequential(
|
||
|
nn.GroupNorm(32, out_dim),
|
||
|
nn.SiLU(),
|
||
|
nn.Conv3d(out_dim, in_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad)),
|
||
|
)
|
||
|
|
||
|
# zero out the last layer params,so the conv block is identity
|
||
|
nn.init.zeros_(self.conv4[-1].weight)
|
||
|
nn.init.zeros_(self.conv4[-1].bias)
|
||
|
|
||
|
self.down_sample = down_sample
|
||
|
self.up_sample = up_sample
|
||
|
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
identity = hidden_states
|
||
|
|
||
|
if self.down_sample:
|
||
|
identity = identity[:,:,::2]
|
||
|
elif self.up_sample:
|
||
|
hidden_states_new = torch.cat((hidden_states,hidden_states),dim=2)
|
||
|
hidden_states_new[:, :, 0::2] = hidden_states
|
||
|
hidden_states_new[:, :, 1::2] = hidden_states
|
||
|
identity = hidden_states_new
|
||
|
del hidden_states_new
|
||
|
|
||
|
if self.down_sample or self.up_sample:
|
||
|
hidden_states = self.conv1(hidden_states)
|
||
|
else:
|
||
|
hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2)
|
||
|
hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2)
|
||
|
hidden_states = self.conv1(hidden_states)
|
||
|
|
||
|
|
||
|
if self.up_sample:
|
||
|
hidden_states = rearrange(hidden_states, 'b (d c) f h w -> b c (f d) h w', d=2)
|
||
|
|
||
|
hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2)
|
||
|
hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2)
|
||
|
hidden_states = self.conv2(hidden_states)
|
||
|
hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2)
|
||
|
hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2)
|
||
|
hidden_states = self.conv3(hidden_states)
|
||
|
hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2)
|
||
|
hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2)
|
||
|
hidden_states = self.conv4(hidden_states)
|
||
|
|
||
|
hidden_states = identity + hidden_states
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class DownEncoderBlock3D(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int,
|
||
|
out_channels: int,
|
||
|
dropout: float = 0.0,
|
||
|
num_layers: int = 1,
|
||
|
resnet_eps: float = 1e-6,
|
||
|
resnet_time_scale_shift: str = "default",
|
||
|
resnet_act_fn: str = "swish",
|
||
|
resnet_groups: int = 32,
|
||
|
resnet_pre_norm: bool = True,
|
||
|
output_scale_factor=1.0,
|
||
|
add_downsample=True,
|
||
|
add_temp_downsample=False,
|
||
|
downsample_padding=1,
|
||
|
):
|
||
|
super().__init__()
|
||
|
resnets = []
|
||
|
temp_convs = []
|
||
|
|
||
|
for i in range(num_layers):
|
||
|
in_channels = in_channels if i == 0 else out_channels
|
||
|
resnets.append(
|
||
|
ResnetBlock2D(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=out_channels,
|
||
|
temb_channels=None,
|
||
|
eps=resnet_eps,
|
||
|
groups=resnet_groups,
|
||
|
dropout=dropout,
|
||
|
time_embedding_norm=resnet_time_scale_shift,
|
||
|
non_linearity=resnet_act_fn,
|
||
|
output_scale_factor=output_scale_factor,
|
||
|
pre_norm=resnet_pre_norm,
|
||
|
)
|
||
|
)
|
||
|
temp_convs.append(
|
||
|
TemporalConvBlock(
|
||
|
out_channels,
|
||
|
out_channels,
|
||
|
dropout=0.1,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
self.resnets = nn.ModuleList(resnets)
|
||
|
self.temp_convs = nn.ModuleList(temp_convs)
|
||
|
|
||
|
if add_temp_downsample:
|
||
|
self.temp_convs_down = TemporalConvBlock(
|
||
|
out_channels,
|
||
|
out_channels,
|
||
|
dropout=0.1,
|
||
|
down_sample=True,
|
||
|
spa_stride=3
|
||
|
)
|
||
|
self.add_temp_downsample = add_temp_downsample
|
||
|
|
||
|
if add_downsample:
|
||
|
self.downsamplers = nn.ModuleList(
|
||
|
[
|
||
|
Downsample2D(
|
||
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
||
|
)
|
||
|
]
|
||
|
)
|
||
|
else:
|
||
|
self.downsamplers = None
|
||
|
|
||
|
def _set_partial_grad(self):
|
||
|
for temp_conv in self.temp_convs:
|
||
|
temp_conv.requires_grad_(True)
|
||
|
if self.downsamplers:
|
||
|
for down_layer in self.downsamplers:
|
||
|
down_layer.requires_grad_(True)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
bz = hidden_states.shape[0]
|
||
|
|
||
|
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
||
|
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
||
|
hidden_states = resnet(hidden_states, temb=None)
|
||
|
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
||
|
hidden_states = temp_conv(hidden_states)
|
||
|
if self.add_temp_downsample:
|
||
|
hidden_states = self.temp_convs_down(hidden_states)
|
||
|
|
||
|
if self.downsamplers is not None:
|
||
|
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
||
|
for upsampler in self.downsamplers:
|
||
|
hidden_states = upsampler(hidden_states)
|
||
|
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class UpDecoderBlock3D(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int,
|
||
|
out_channels: int,
|
||
|
dropout: float = 0.0,
|
||
|
num_layers: int = 1,
|
||
|
resnet_eps: float = 1e-6,
|
||
|
resnet_time_scale_shift: str = "default", # default, spatial
|
||
|
resnet_act_fn: str = "swish",
|
||
|
resnet_groups: int = 32,
|
||
|
resnet_pre_norm: bool = True,
|
||
|
output_scale_factor=1.0,
|
||
|
add_upsample=True,
|
||
|
add_temp_upsample=False,
|
||
|
temb_channels=None,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.add_upsample = add_upsample
|
||
|
|
||
|
resnets = []
|
||
|
temp_convs = []
|
||
|
|
||
|
for i in range(num_layers):
|
||
|
input_channels = in_channels if i == 0 else out_channels
|
||
|
|
||
|
resnets.append(
|
||
|
ResnetBlock2D(
|
||
|
in_channels=input_channels,
|
||
|
out_channels=out_channels,
|
||
|
temb_channels=temb_channels,
|
||
|
eps=resnet_eps,
|
||
|
groups=resnet_groups,
|
||
|
dropout=dropout,
|
||
|
time_embedding_norm=resnet_time_scale_shift,
|
||
|
non_linearity=resnet_act_fn,
|
||
|
output_scale_factor=output_scale_factor,
|
||
|
pre_norm=resnet_pre_norm,
|
||
|
)
|
||
|
)
|
||
|
temp_convs.append(
|
||
|
TemporalConvBlock(
|
||
|
out_channels,
|
||
|
out_channels,
|
||
|
dropout=0.1,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
self.resnets = nn.ModuleList(resnets)
|
||
|
self.temp_convs = nn.ModuleList(temp_convs)
|
||
|
|
||
|
self.add_temp_upsample = add_temp_upsample
|
||
|
if add_temp_upsample:
|
||
|
self.temp_conv_up = TemporalConvBlock(
|
||
|
out_channels,
|
||
|
out_channels,
|
||
|
dropout=0.1,
|
||
|
up_sample=True,
|
||
|
spa_stride=3
|
||
|
)
|
||
|
|
||
|
|
||
|
if self.add_upsample:
|
||
|
# self.upsamplers = nn.ModuleList([PSUpsample2D(out_channels, use_conv=True, use_pixel_shuffle=True, out_channels=out_channels)])
|
||
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
||
|
else:
|
||
|
self.upsamplers = None
|
||
|
|
||
|
def _set_partial_grad(self):
|
||
|
for temp_conv in self.temp_convs:
|
||
|
temp_conv.requires_grad_(True)
|
||
|
if self.add_upsample:
|
||
|
self.upsamplers.requires_grad_(True)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
bz = hidden_states.shape[0]
|
||
|
|
||
|
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
||
|
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
||
|
hidden_states = resnet(hidden_states, temb=None)
|
||
|
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
||
|
hidden_states = temp_conv(hidden_states)
|
||
|
if self.add_temp_upsample:
|
||
|
hidden_states = self.temp_conv_up(hidden_states)
|
||
|
|
||
|
if self.upsamplers is not None:
|
||
|
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
||
|
for upsampler in self.upsamplers:
|
||
|
hidden_states = upsampler(hidden_states)
|
||
|
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class UNetMidBlock3DConv(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int,
|
||
|
temb_channels: int,
|
||
|
dropout: float = 0.0,
|
||
|
num_layers: int = 1,
|
||
|
resnet_eps: float = 1e-6,
|
||
|
resnet_time_scale_shift: str = "default", # default, spatial
|
||
|
resnet_act_fn: str = "swish",
|
||
|
resnet_groups: int = 32,
|
||
|
resnet_pre_norm: bool = True,
|
||
|
add_attention: bool = True,
|
||
|
attention_head_dim=1,
|
||
|
output_scale_factor=1.0,
|
||
|
):
|
||
|
super().__init__()
|
||
|
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
||
|
self.add_attention = add_attention
|
||
|
|
||
|
# there is always at least one resnet
|
||
|
resnets = [
|
||
|
ResnetBlock2D(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=in_channels,
|
||
|
temb_channels=temb_channels,
|
||
|
eps=resnet_eps,
|
||
|
groups=resnet_groups,
|
||
|
dropout=dropout,
|
||
|
time_embedding_norm=resnet_time_scale_shift,
|
||
|
non_linearity=resnet_act_fn,
|
||
|
output_scale_factor=output_scale_factor,
|
||
|
pre_norm=resnet_pre_norm,
|
||
|
)
|
||
|
]
|
||
|
temp_convs = [
|
||
|
TemporalConvBlock(
|
||
|
in_channels,
|
||
|
in_channels,
|
||
|
dropout=0.1,
|
||
|
)
|
||
|
]
|
||
|
attentions = []
|
||
|
|
||
|
if attention_head_dim is None:
|
||
|
attention_head_dim = in_channels
|
||
|
|
||
|
for _ in range(num_layers):
|
||
|
if self.add_attention:
|
||
|
attentions.append(
|
||
|
Attention(
|
||
|
in_channels,
|
||
|
heads=in_channels // attention_head_dim,
|
||
|
dim_head=attention_head_dim,
|
||
|
rescale_output_factor=output_scale_factor,
|
||
|
eps=resnet_eps,
|
||
|
norm_num_groups=resnet_groups if resnet_time_scale_shift == "default" else None,
|
||
|
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
|
||
|
residual_connection=True,
|
||
|
bias=True,
|
||
|
upcast_softmax=True,
|
||
|
_from_deprecated_attn_block=True,
|
||
|
)
|
||
|
)
|
||
|
else:
|
||
|
attentions.append(None)
|
||
|
|
||
|
resnets.append(
|
||
|
ResnetBlock2D(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=in_channels,
|
||
|
temb_channels=temb_channels,
|
||
|
eps=resnet_eps,
|
||
|
groups=resnet_groups,
|
||
|
dropout=dropout,
|
||
|
time_embedding_norm=resnet_time_scale_shift,
|
||
|
non_linearity=resnet_act_fn,
|
||
|
output_scale_factor=output_scale_factor,
|
||
|
pre_norm=resnet_pre_norm,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
temp_convs.append(
|
||
|
TemporalConvBlock(
|
||
|
in_channels,
|
||
|
in_channels,
|
||
|
dropout=0.1,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
self.resnets = nn.ModuleList(resnets)
|
||
|
self.temp_convs = nn.ModuleList(temp_convs)
|
||
|
self.attentions = nn.ModuleList(attentions)
|
||
|
|
||
|
def _set_partial_grad(self):
|
||
|
for temp_conv in self.temp_convs:
|
||
|
temp_conv.requires_grad_(True)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
):
|
||
|
bz = hidden_states.shape[0]
|
||
|
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
||
|
|
||
|
hidden_states = self.resnets[0](hidden_states, temb=None)
|
||
|
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
||
|
hidden_states = self.temp_convs[0](hidden_states)
|
||
|
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
|
||
|
|
||
|
for attn, resnet, temp_conv in zip(
|
||
|
self.attentions, self.resnets[1:], self.temp_convs[1:]
|
||
|
):
|
||
|
hidden_states = attn(hidden_states)
|
||
|
hidden_states = resnet(hidden_states, temb=None)
|
||
|
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
|
||
|
hidden_states = temp_conv(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Encoder3D(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels=3,
|
||
|
out_channels=3,
|
||
|
num_blocks=4,
|
||
|
blocks_temp_li=[False, False, False, False],
|
||
|
block_out_channels=(64,),
|
||
|
layers_per_block=2,
|
||
|
norm_num_groups=32,
|
||
|
act_fn="silu",
|
||
|
double_z=True,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.layers_per_block = layers_per_block
|
||
|
self.blocks_temp_li = blocks_temp_li
|
||
|
|
||
|
self.conv_in = nn.Conv2d(
|
||
|
in_channels,
|
||
|
block_out_channels[0],
|
||
|
kernel_size=3,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
)
|
||
|
|
||
|
self.temp_conv_in = nn.Conv3d(
|
||
|
block_out_channels[0],
|
||
|
block_out_channels[0],
|
||
|
(3,1,1),
|
||
|
padding = (1, 0, 0)
|
||
|
)
|
||
|
|
||
|
self.mid_block = None
|
||
|
self.down_blocks = nn.ModuleList([])
|
||
|
|
||
|
# down
|
||
|
output_channel = block_out_channels[0]
|
||
|
for i in range(num_blocks):
|
||
|
input_channel = output_channel
|
||
|
output_channel = block_out_channels[i]
|
||
|
is_final_block = i == len(block_out_channels) - 1
|
||
|
|
||
|
down_block = DownEncoderBlock3D(
|
||
|
num_layers=self.layers_per_block,
|
||
|
in_channels=input_channel,
|
||
|
out_channels=output_channel,
|
||
|
add_downsample=not is_final_block,
|
||
|
add_temp_downsample=blocks_temp_li[i],
|
||
|
resnet_eps=1e-6,
|
||
|
downsample_padding=0,
|
||
|
resnet_act_fn=act_fn,
|
||
|
resnet_groups=norm_num_groups,
|
||
|
)
|
||
|
self.down_blocks.append(down_block)
|
||
|
|
||
|
# mid
|
||
|
self.mid_block = UNetMidBlock3DConv(
|
||
|
in_channels=block_out_channels[-1],
|
||
|
resnet_eps=1e-6,
|
||
|
resnet_act_fn=act_fn,
|
||
|
output_scale_factor=1,
|
||
|
resnet_time_scale_shift="default",
|
||
|
attention_head_dim=block_out_channels[-1],
|
||
|
resnet_groups=norm_num_groups,
|
||
|
temb_channels=None,
|
||
|
)
|
||
|
|
||
|
# out
|
||
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
||
|
self.conv_act = nn.SiLU()
|
||
|
|
||
|
conv_out_channels = 2 * out_channels if double_z else out_channels
|
||
|
|
||
|
self.temp_conv_out = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3,1,1), padding = (1, 0, 0))
|
||
|
|
||
|
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
|
||
|
|
||
|
nn.init.zeros_(self.temp_conv_in.weight)
|
||
|
nn.init.zeros_(self.temp_conv_in.bias)
|
||
|
nn.init.zeros_(self.temp_conv_out.weight)
|
||
|
nn.init.zeros_(self.temp_conv_out.bias)
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(self, x):
|
||
|
'''
|
||
|
x: [b, c, (tb f), h, w]
|
||
|
'''
|
||
|
bz = x.shape[0]
|
||
|
sample = rearrange(x, 'b c n h w -> (b n) c h w')
|
||
|
sample = self.conv_in(sample)
|
||
|
|
||
|
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
||
|
temp_sample = sample
|
||
|
sample = self.temp_conv_in(sample)
|
||
|
sample = sample+temp_sample
|
||
|
# down
|
||
|
for b_id, down_block in enumerate(self.down_blocks):
|
||
|
sample = down_block(sample)
|
||
|
# middle
|
||
|
sample = self.mid_block(sample)
|
||
|
|
||
|
# post-process
|
||
|
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
|
||
|
sample = self.conv_norm_out(sample)
|
||
|
sample = self.conv_act(sample)
|
||
|
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
||
|
|
||
|
temp_sample = sample
|
||
|
sample = self.temp_conv_out(sample)
|
||
|
sample = sample+temp_sample
|
||
|
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
|
||
|
|
||
|
sample = self.conv_out(sample)
|
||
|
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
||
|
return sample
|
||
|
|
||
|
class Decoder3D(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels=4,
|
||
|
out_channels=3,
|
||
|
num_blocks=4,
|
||
|
blocks_temp_li=[False, False, False, False],
|
||
|
block_out_channels=(64,),
|
||
|
layers_per_block=2,
|
||
|
norm_num_groups=32,
|
||
|
act_fn="silu",
|
||
|
norm_type="group", # group, spatial
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.layers_per_block = layers_per_block
|
||
|
self.blocks_temp_li = blocks_temp_li
|
||
|
|
||
|
self.conv_in = nn.Conv2d(
|
||
|
in_channels,
|
||
|
block_out_channels[-1],
|
||
|
kernel_size=3,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
)
|
||
|
|
||
|
self.temp_conv_in = nn.Conv3d(
|
||
|
block_out_channels[-1],
|
||
|
block_out_channels[-1],
|
||
|
(3,1,1),
|
||
|
padding = (1, 0, 0)
|
||
|
)
|
||
|
|
||
|
self.mid_block = None
|
||
|
self.up_blocks = nn.ModuleList([])
|
||
|
|
||
|
temb_channels = in_channels if norm_type == "spatial" else None
|
||
|
|
||
|
# mid
|
||
|
self.mid_block = UNetMidBlock3DConv(
|
||
|
in_channels=block_out_channels[-1],
|
||
|
resnet_eps=1e-6,
|
||
|
resnet_act_fn=act_fn,
|
||
|
output_scale_factor=1,
|
||
|
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
|
||
|
attention_head_dim=block_out_channels[-1],
|
||
|
resnet_groups=norm_num_groups,
|
||
|
temb_channels=temb_channels,
|
||
|
)
|
||
|
|
||
|
# up
|
||
|
reversed_block_out_channels = list(reversed(block_out_channels))
|
||
|
output_channel = reversed_block_out_channels[0]
|
||
|
for i in range(num_blocks):
|
||
|
prev_output_channel = output_channel
|
||
|
output_channel = reversed_block_out_channels[i]
|
||
|
|
||
|
is_final_block = i == len(block_out_channels) - 1
|
||
|
|
||
|
up_block = UpDecoderBlock3D(
|
||
|
num_layers=self.layers_per_block + 1,
|
||
|
in_channels=prev_output_channel,
|
||
|
out_channels=output_channel,
|
||
|
add_upsample=not is_final_block,
|
||
|
add_temp_upsample=blocks_temp_li[i],
|
||
|
resnet_eps=1e-6,
|
||
|
resnet_act_fn=act_fn,
|
||
|
resnet_groups=norm_num_groups,
|
||
|
temb_channels=temb_channels,
|
||
|
resnet_time_scale_shift=norm_type,
|
||
|
)
|
||
|
self.up_blocks.append(up_block)
|
||
|
prev_output_channel = output_channel
|
||
|
|
||
|
# out
|
||
|
if norm_type == "spatial":
|
||
|
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
|
||
|
else:
|
||
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
||
|
self.conv_act = nn.SiLU()
|
||
|
|
||
|
self.temp_conv_out = nn.Conv3d(block_out_channels[0], block_out_channels[0], (3,1,1), padding = (1, 0, 0))
|
||
|
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
||
|
|
||
|
nn.init.zeros_(self.temp_conv_in.weight)
|
||
|
nn.init.zeros_(self.temp_conv_in.bias)
|
||
|
nn.init.zeros_(self.temp_conv_out.weight)
|
||
|
nn.init.zeros_(self.temp_conv_out.bias)
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(self, z):
|
||
|
bz = z.shape[0]
|
||
|
sample = rearrange(z, 'b c n h w -> (b n) c h w')
|
||
|
sample = self.conv_in(sample)
|
||
|
|
||
|
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
||
|
temp_sample = sample
|
||
|
sample = self.temp_conv_in(sample)
|
||
|
sample = sample+temp_sample
|
||
|
|
||
|
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
||
|
# middle
|
||
|
sample = self.mid_block(sample)
|
||
|
sample = sample.to(upscale_dtype)
|
||
|
|
||
|
# up
|
||
|
for b_id, up_block in enumerate(self.up_blocks):
|
||
|
sample = up_block(sample)
|
||
|
|
||
|
# post-process
|
||
|
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
|
||
|
sample = self.conv_norm_out(sample)
|
||
|
sample = self.conv_act(sample)
|
||
|
|
||
|
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
||
|
temp_sample = sample
|
||
|
sample = self.temp_conv_out(sample)
|
||
|
sample = sample+temp_sample
|
||
|
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
|
||
|
|
||
|
sample = self.conv_out(sample)
|
||
|
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
|
||
|
return sample
|
||
|
|
||
|
|
||
|
|
||
|
class AllegroAutoencoderKL3D(ModelMixin, ConfigMixin):
|
||
|
r"""
|
||
|
A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
|
||
|
|
||
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
||
|
for all models (such as downloading or saving).
|
||
|
|
||
|
Parameters:
|
||
|
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
||
|
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
||
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
|
||
|
Tuple of downsample block types.
|
||
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
||
|
Tuple of upsample block types.
|
||
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
|
||
|
Tuple of block output channels.
|
||
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
||
|
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
|
||
|
sample_size (`int`, *optional*, defaults to `256`): Spatial Tiling Size.
|
||
|
tile_overlap (`tuple`, *optional*, defaults to `(120, 80`): Spatial overlapping size while tiling (height, width)
|
||
|
chunk_len (`int`, *optional*, defaults to `24`): Temporal Tiling Size.
|
||
|
t_over (`int`, *optional*, defaults to `8`): Temporal overlapping size while tiling
|
||
|
scaling_factor (`float`, *optional*, defaults to 0.13235):
|
||
|
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
||
|
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
||
|
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
||
|
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
||
|
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
||
|
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
|
||
|
force_upcast (`bool`, *optional*, default to `True`):
|
||
|
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
|
||
|
can be fine-tuned / trained to a lower range without loosing too much precision in which case
|
||
|
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
|
||
|
blocks_tempdown_li (`List`, *optional*, defaults to `[True, True, False, False]`): Each item indicates whether each TemporalBlock in the Encoder performs temporal downsampling.
|
||
|
blocks_tempup_li (`List`, *optional*, defaults to `[False, True, True, False]`): Each item indicates whether each TemporalBlock in the Decoder performs temporal upsampling.
|
||
|
load_mode (`str`, *optional*, defaults to `full`): Load mode for the model. Can be one of `full`, `encoder_only`, `decoder_only`. which corresponds to loading the full model state dicts, only the encoder state dicts, or only the decoder state dicts.
|
||
|
"""
|
||
|
|
||
|
_supports_gradient_checkpointing = True
|
||
|
|
||
|
@register_to_config
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int = 3,
|
||
|
out_channels: int = 3,
|
||
|
down_block_num: int = 4,
|
||
|
up_block_num: int = 4,
|
||
|
block_out_channels: Tuple[int] = (128,256,512,512),
|
||
|
layers_per_block: int = 2,
|
||
|
act_fn: str = "silu",
|
||
|
latent_channels: int = 4,
|
||
|
norm_num_groups: int = 32,
|
||
|
sample_size: int = 320,
|
||
|
tile_overlap: tuple = (120, 80),
|
||
|
force_upcast: bool = True,
|
||
|
chunk_len: int = 24,
|
||
|
t_over: int = 8,
|
||
|
scale_factor: float = 0.13235,
|
||
|
blocks_tempdown_li=[True, True, False, False],
|
||
|
blocks_tempup_li=[False, True, True, False],
|
||
|
load_mode = 'full',
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
self.blocks_tempdown_li = blocks_tempdown_li
|
||
|
self.blocks_tempup_li = blocks_tempup_li
|
||
|
# pass init params to Encoder
|
||
|
self.load_mode = load_mode
|
||
|
if load_mode in ['full', 'encoder_only']:
|
||
|
self.encoder = Encoder3D(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=latent_channels,
|
||
|
num_blocks=down_block_num,
|
||
|
blocks_temp_li=blocks_tempdown_li,
|
||
|
block_out_channels=block_out_channels,
|
||
|
layers_per_block=layers_per_block,
|
||
|
act_fn=act_fn,
|
||
|
norm_num_groups=norm_num_groups,
|
||
|
double_z=True,
|
||
|
)
|
||
|
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
|
||
|
|
||
|
if load_mode in ['full', 'decoder_only']:
|
||
|
# pass init params to Decoder
|
||
|
self.decoder = Decoder3D(
|
||
|
in_channels=latent_channels,
|
||
|
out_channels=out_channels,
|
||
|
num_blocks=up_block_num,
|
||
|
blocks_temp_li=blocks_tempup_li,
|
||
|
block_out_channels=block_out_channels,
|
||
|
layers_per_block=layers_per_block,
|
||
|
norm_num_groups=norm_num_groups,
|
||
|
act_fn=act_fn,
|
||
|
)
|
||
|
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)
|
||
|
|
||
|
|
||
|
# only relevant if vae tiling is enabled
|
||
|
sample_size = (
|
||
|
sample_size[0]
|
||
|
if isinstance(sample_size, (list, tuple))
|
||
|
else sample_size
|
||
|
)
|
||
|
self.tile_overlap = tile_overlap
|
||
|
self.vae_scale_factor=[4, 8, 8]
|
||
|
self.scale_factor = scale_factor
|
||
|
self.sample_size = sample_size
|
||
|
self.chunk_len = chunk_len
|
||
|
self.t_over = t_over
|
||
|
|
||
|
self.latent_chunk_len = self.chunk_len//4
|
||
|
self.latent_t_over = self.t_over//4
|
||
|
self.kernel = (self.chunk_len, self.sample_size, self.sample_size) #(24, 256, 256)
|
||
|
self.stride = (self.chunk_len - self.t_over, self.sample_size-self.tile_overlap[0], self.sample_size-self.tile_overlap[1]) # (16, 112, 192)
|
||
|
|
||
|
|
||
|
def encode(self, input_imgs: torch.Tensor, return_dict: bool = True, local_batch_size=1) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
||
|
KERNEL = self.kernel
|
||
|
STRIDE = self.stride
|
||
|
LOCAL_BS = local_batch_size
|
||
|
OUT_C = 8
|
||
|
|
||
|
B, C, N, H, W = input_imgs.shape
|
||
|
|
||
|
|
||
|
out_n = math.floor((N - KERNEL[0]) / STRIDE[0]) + 1
|
||
|
out_h = math.floor((H - KERNEL[1]) / STRIDE[1]) + 1
|
||
|
out_w = math.floor((W - KERNEL[2]) / STRIDE[2]) + 1
|
||
|
|
||
|
## cut video into overlapped small cubes and batch forward
|
||
|
num = 0
|
||
|
|
||
|
out_latent = torch.zeros((out_n*out_h*out_w, OUT_C, KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8), device=input_imgs.device, dtype=input_imgs.dtype)
|
||
|
vae_batch_input = torch.zeros((LOCAL_BS, C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_imgs.device, dtype=input_imgs.dtype)
|
||
|
|
||
|
for i in range(out_n):
|
||
|
for j in range(out_h):
|
||
|
for k in range(out_w):
|
||
|
n_start, n_end = i * STRIDE[0], i * STRIDE[0] + KERNEL[0]
|
||
|
h_start, h_end = j * STRIDE[1], j * STRIDE[1] + KERNEL[1]
|
||
|
w_start, w_end = k * STRIDE[2], k * STRIDE[2] + KERNEL[2]
|
||
|
video_cube = input_imgs[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
|
||
|
vae_batch_input[num%LOCAL_BS] = video_cube
|
||
|
|
||
|
if num%LOCAL_BS == LOCAL_BS-1 or num == out_n*out_h*out_w-1:
|
||
|
latent = self.encoder(vae_batch_input)
|
||
|
|
||
|
if num == out_n*out_h*out_w-1 and num%LOCAL_BS != LOCAL_BS-1:
|
||
|
out_latent[num-num%LOCAL_BS:] = latent[:num%LOCAL_BS+1]
|
||
|
else:
|
||
|
out_latent[num-LOCAL_BS+1:num+1] = latent
|
||
|
vae_batch_input = torch.zeros((LOCAL_BS, C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_imgs.device, dtype=input_imgs.dtype)
|
||
|
num+=1
|
||
|
|
||
|
## flatten the batched out latent to videos and supress the overlapped parts
|
||
|
B, C, N, H, W = input_imgs.shape
|
||
|
|
||
|
out_video_cube = torch.zeros((B, OUT_C, N//4, H//8, W//8), device=input_imgs.device, dtype=input_imgs.dtype)
|
||
|
OUT_KERNEL = KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8
|
||
|
OUT_STRIDE = STRIDE[0]//4, STRIDE[1]//8, STRIDE[2]//8
|
||
|
OVERLAP = OUT_KERNEL[0]-OUT_STRIDE[0], OUT_KERNEL[1]-OUT_STRIDE[1], OUT_KERNEL[2]-OUT_STRIDE[2]
|
||
|
|
||
|
for i in range(out_n):
|
||
|
n_start, n_end = i * OUT_STRIDE[0], i * OUT_STRIDE[0] + OUT_KERNEL[0]
|
||
|
for j in range(out_h):
|
||
|
h_start, h_end = j * OUT_STRIDE[1], j * OUT_STRIDE[1] + OUT_KERNEL[1]
|
||
|
for k in range(out_w):
|
||
|
w_start, w_end = k * OUT_STRIDE[2], k * OUT_STRIDE[2] + OUT_KERNEL[2]
|
||
|
latent_mean_blend = prepare_for_blend((i, out_n, OVERLAP[0]), (j, out_h, OVERLAP[1]), (k, out_w, OVERLAP[2]), out_latent[i*out_h*out_w+j*out_w+k].unsqueeze(0))
|
||
|
out_video_cube[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += latent_mean_blend
|
||
|
|
||
|
## final conv
|
||
|
out_video_cube = rearrange(out_video_cube, 'b c n h w -> (b n) c h w')
|
||
|
out_video_cube = self.quant_conv(out_video_cube)
|
||
|
out_video_cube = rearrange(out_video_cube, '(b n) c h w -> b c n h w', b=B)
|
||
|
|
||
|
posterior = DiagonalGaussianDistribution(out_video_cube)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (posterior,)
|
||
|
|
||
|
return AutoencoderKLOutput(latent_dist=posterior)
|
||
|
|
||
|
|
||
|
def decode(self, input_latents: torch.Tensor, return_dict: bool = True, local_batch_size=1) -> Union[DecoderOutput, torch.Tensor]:
|
||
|
KERNEL = self.kernel
|
||
|
STRIDE = self.stride
|
||
|
|
||
|
LOCAL_BS = local_batch_size
|
||
|
OUT_C = 3
|
||
|
IN_KERNEL = KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8
|
||
|
IN_STRIDE = STRIDE[0]//4, STRIDE[1]//8, STRIDE[2]//8
|
||
|
|
||
|
B, C, N, H, W = input_latents.shape
|
||
|
|
||
|
## post quant conv (a mapping)
|
||
|
input_latents = rearrange(input_latents, 'b c n h w -> (b n) c h w')
|
||
|
input_latents = self.post_quant_conv(input_latents)
|
||
|
input_latents = rearrange(input_latents, '(b n) c h w -> b c n h w', b=B)
|
||
|
|
||
|
## out tensor shape
|
||
|
out_n = math.floor((N - IN_KERNEL[0]) / IN_STRIDE[0]) + 1
|
||
|
out_h = math.floor((H - IN_KERNEL[1]) / IN_STRIDE[1]) + 1
|
||
|
out_w = math.floor((W - IN_KERNEL[2]) / IN_STRIDE[2]) + 1
|
||
|
|
||
|
## cut latent into overlapped small cubes and batch forward
|
||
|
num = 0
|
||
|
decoded_cube = torch.zeros((out_n*out_h*out_w, OUT_C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype)
|
||
|
vae_batch_input = torch.zeros((LOCAL_BS, C, IN_KERNEL[0], IN_KERNEL[1], IN_KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype)
|
||
|
for i in range(out_n):
|
||
|
for j in range(out_h):
|
||
|
for k in range(out_w):
|
||
|
n_start, n_end = i * IN_STRIDE[0], i * IN_STRIDE[0] + IN_KERNEL[0]
|
||
|
h_start, h_end = j * IN_STRIDE[1], j * IN_STRIDE[1] + IN_KERNEL[1]
|
||
|
w_start, w_end = k * IN_STRIDE[2], k * IN_STRIDE[2] + IN_KERNEL[2]
|
||
|
latent_cube = input_latents[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
|
||
|
vae_batch_input[num%LOCAL_BS] = latent_cube
|
||
|
if num%LOCAL_BS == LOCAL_BS-1 or num == out_n*out_h*out_w-1:
|
||
|
|
||
|
latent = self.decoder(vae_batch_input)
|
||
|
|
||
|
if num == out_n*out_h*out_w-1 and num%LOCAL_BS != LOCAL_BS-1:
|
||
|
decoded_cube[num-num%LOCAL_BS:] = latent[:num%LOCAL_BS+1]
|
||
|
else:
|
||
|
decoded_cube[num-LOCAL_BS+1:num+1] = latent
|
||
|
vae_batch_input = torch.zeros((LOCAL_BS, C, IN_KERNEL[0], IN_KERNEL[1], IN_KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype)
|
||
|
num+=1
|
||
|
B, C, N, H, W = input_latents.shape
|
||
|
|
||
|
out_video = torch.zeros((B, OUT_C, N*4, H*8, W*8), device=input_latents.device, dtype=input_latents.dtype)
|
||
|
OVERLAP = KERNEL[0]-STRIDE[0], KERNEL[1]-STRIDE[1], KERNEL[2]-STRIDE[2]
|
||
|
for i in range(out_n):
|
||
|
n_start, n_end = i * STRIDE[0], i * STRIDE[0] + KERNEL[0]
|
||
|
for j in range(out_h):
|
||
|
h_start, h_end = j * STRIDE[1], j * STRIDE[1] + KERNEL[1]
|
||
|
for k in range(out_w):
|
||
|
w_start, w_end = k * STRIDE[2], k * STRIDE[2] + KERNEL[2]
|
||
|
out_video_blend = prepare_for_blend((i, out_n, OVERLAP[0]), (j, out_h, OVERLAP[1]), (k, out_w, OVERLAP[2]), decoded_cube[i*out_h*out_w+j*out_w+k].unsqueeze(0))
|
||
|
out_video[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += out_video_blend
|
||
|
|
||
|
out_video = rearrange(out_video, 'b c t h w -> b t c h w').contiguous()
|
||
|
|
||
|
decoded = out_video
|
||
|
if not return_dict:
|
||
|
return (decoded,)
|
||
|
|
||
|
return DecoderOutput(sample=decoded)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
sample: torch.Tensor,
|
||
|
sample_posterior: bool = False,
|
||
|
return_dict: bool = True,
|
||
|
generator: Optional[torch.Generator] = None,
|
||
|
encoder_local_batch_size: int = 2,
|
||
|
decoder_local_batch_size: int = 2,
|
||
|
) -> Union[DecoderOutput, torch.Tensor]:
|
||
|
r"""
|
||
|
Args:
|
||
|
sample (`torch.Tensor`): Input sample.
|
||
|
sample_posterior (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to sample from the posterior.
|
||
|
return_dict (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
||
|
generator (`torch.Generator`, *optional*):
|
||
|
PyTorch random number generator.
|
||
|
encoder_local_batch_size (`int`, *optional*, defaults to 2):
|
||
|
Local batch size for the encoder's batch inference.
|
||
|
decoder_local_batch_size (`int`, *optional*, defaults to 2):
|
||
|
Local batch size for the decoder's batch inference.
|
||
|
"""
|
||
|
x = sample
|
||
|
posterior = self.encode(x, local_batch_size=encoder_local_batch_size).latent_dist
|
||
|
if sample_posterior:
|
||
|
z = posterior.sample(generator=generator)
|
||
|
else:
|
||
|
z = posterior.mode()
|
||
|
dec = self.decode(z, local_batch_size=decoder_local_batch_size).sample
|
||
|
|
||
|
if not return_dict:
|
||
|
return (dec,)
|
||
|
|
||
|
return DecoderOutput(sample=dec)
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
||
|
kwargs["torch_type"] = torch.float32
|
||
|
return super().from_pretrained(pretrained_model_name_or_path, **kwargs)
|
||
|
|
||
|
|
||
|
def prepare_for_blend(n_param, h_param, w_param, x):
|
||
|
n, n_max, overlap_n = n_param
|
||
|
h, h_max, overlap_h = h_param
|
||
|
w, w_max, overlap_w = w_param
|
||
|
if overlap_n > 0:
|
||
|
if n > 0: # the head overlap part decays from 0 to 1
|
||
|
x[:,:,0:overlap_n,:,:] = x[:,:,0:overlap_n,:,:] * (torch.arange(0, overlap_n).float().to(x.device) / overlap_n).reshape(overlap_n,1,1)
|
||
|
if n < n_max-1: # the tail overlap part decays from 1 to 0
|
||
|
x[:,:,-overlap_n:,:,:] = x[:,:,-overlap_n:,:,:] * (1 - torch.arange(0, overlap_n).float().to(x.device) / overlap_n).reshape(overlap_n,1,1)
|
||
|
if h > 0:
|
||
|
x[:,:,:,0:overlap_h,:] = x[:,:,:,0:overlap_h,:] * (torch.arange(0, overlap_h).float().to(x.device) / overlap_h).reshape(overlap_h,1)
|
||
|
if h < h_max-1:
|
||
|
x[:,:,:,-overlap_h:,:] = x[:,:,:,-overlap_h:,:] * (1 - torch.arange(0, overlap_h).float().to(x.device) / overlap_h).reshape(overlap_h,1)
|
||
|
if w > 0:
|
||
|
x[:,:,:,:,0:overlap_w] = x[:,:,:,:,0:overlap_w] * (torch.arange(0, overlap_w).float().to(x.device) / overlap_w)
|
||
|
if w < w_max-1:
|
||
|
x[:,:,:,:,-overlap_w:] = x[:,:,:,:,-overlap_w:] * (1 - torch.arange(0, overlap_w).float().to(x.device) / overlap_w)
|
||
|
return x
|