diff --git a/model_index.json b/model_index.json new file mode 100644 index 0000000..295b155 --- /dev/null +++ b/model_index.json @@ -0,0 +1,27 @@ +{ + "_class_name": [ + "pipeline_allegro", + "AllegroPipeline" + ], + "_diffusers_version": "0.28.0", + "scheduler": [ + "diffusers", + "EulerAncestralDiscreteScheduler" + ], + "text_encoder": [ + "transformers", + "T5EncoderModel" + ], + "tokenizer": [ + "transformers", + "T5Tokenizer" + ], + "transformer": [ + "transformer_3d_allegro", + "AllegroTransformer3DModel" + ], + "vae": [ + "vae_allegro", + "AllegroAutoencoderKL3D" + ] +} \ No newline at end of file diff --git a/pipeline_allegro.py b/pipeline_allegro.py new file mode 100644 index 0000000..e5d4509 --- /dev/null +++ b/pipeline_allegro.py @@ -0,0 +1,832 @@ +# Adapted from Open-Sora-Plan + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# -------------------------------------------------------- +# References: +# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan +# -------------------------------------------------------- + +import html +import inspect +import math +import re +import urllib.parse as ul +from typing import Callable, List, Optional, Tuple, Union +from einops import rearrange +import ftfy +import torch +from dataclasses import dataclass +import tqdm +from bs4 import BeautifulSoup + +from diffusers import DiffusionPipeline, ModelMixin +from diffusers.schedulers import EulerAncestralDiscreteScheduler +from diffusers.utils import ( + BACKENDS_MAPPING, + is_bs4_available, + is_ftfy_available, + logging, + replace_example_docstring, + BaseOutput +) +from diffusers.utils.torch_utils import randn_tensor +from transformers import T5EncoderModel, T5Tokenizer + +logger = logging.get_logger(__name__) + +# from transformer_3d_allegro import AllegroTransformer3DModel +# from vae_allegro import AllegroAutoencoderKL3D +@dataclass +class AllegroPipelineOutput(BaseOutput): + r""" + Output class for Allegro pipelines. + + Args: + video (`torch.Tensor`): + Torch tensor with shape `(batch_size, num_frames, channels, height, width)`. + """ + video: torch.Tensor + + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> import torch + + >>> # You can replace the your_path_to_model with your own path. + >>> pipe = AllegroPipeline.from_pretrained(your_path_to_model, torch_dtype=torch.float16, trust_remote_code=True) + + >>> prompt = "A small cactus with a happy face in the Sahara desert." + >>> image = pipe(prompt).video[0] + ``` +""" + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + **kwargs, +): + """ + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` + must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default + timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` + must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +class AllegroPipeline(DiffusionPipeline): + r""" + Pipeline for text-to-image generation using Allegro. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the + library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) + + Args: + vae ([`AllegroAutoEncoderKL3D`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + text_encoder ([`T5EncoderModel`]): + Frozen text-encoder. PixArt-Alpha uses + [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the + [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. + tokenizer (`T5Tokenizer`): + Tokenizer of class + [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). + transformer ([`AllegroTransformer3DModel`]): + A text conditioned `AllegroTransformer3DModel` to denoise the encoded image latents. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `transformer` to denoise the encoded image latents. + """ + bad_punct_regex = re.compile( + r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}" + ) # noqa + + _optional_components = ["tokenizer", "text_encoder", "vae", "transformer", "scheduler"] + model_cpu_offload_seq = "text_encoder->transformer->vae" + + def __init__( + self, + tokenizer: Optional[T5Tokenizer] = None, + text_encoder: Optional[T5EncoderModel] = None, + vae: Optional[ModelMixin] = None, + transformer: Optional[ModelMixin] = None, + scheduler: Optional[EulerAncestralDiscreteScheduler] = None, + device: torch.device = torch.device("cuda"), + dtype: torch.dtype = torch.float16, + ): + super().__init__() + # # init + # if tokenizer is None: + # tokenizer = T5Tokenizer.from_pretrained(tokenizer) + # if text_encoder is None: + # text_encoder = T5EncoderModel.from_pretrained(text_encoder, torch_dtype=torch.float16) + # if vae is None: + # vae = AllegroAutoencoderKL3D.from_pretrained(vae).to(dtype=torch.float32) + # if transformer is None: + # transformer = AllegroTransformer3DModel.from_pretrained(transformer, torch_dtype=dtype) + # if scheduler is None: + # scheduler = EulerAncestralDiscreteScheduler() + self.register_modules( + tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler + ) + + + # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt + def encode_prompt( + self, + prompt: Union[str, List[str]], + do_classifier_free_guidance: bool = True, + negative_prompt: str = "", + num_images_per_prompt: int = 1, + device: Optional[torch.device] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + prompt_attention_mask: Optional[torch.FloatTensor] = None, + negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, + clean_caption: bool = False, + max_sequence_length: int = 120, + **kwargs, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + negative_prompt (`str` or `List[str]`, *optional*): + The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` + instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For + PixArt-Alpha, this should be "". + do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): + whether to use classifier free guidance or not + num_images_per_prompt (`int`, *optional*, defaults to 1): + number of images that should be generated per prompt + device: (`torch.device`, *optional*): + torch device to place the resulting embeddings on + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the "" + string. + clean_caption (`bool`, defaults to `False`): + If `True`, the function will preprocess and clean the provided caption before encoding. + max_sequence_length (`int`, defaults to 120): Maximum sequence length to use for the prompt. + """ + embeds_initially_provided = prompt_embeds is not None and negative_prompt_embeds is not None + + if device is None: + device = self._execution_device + + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + # See Section 3.1. of the paper. + max_length = max_sequence_length + + if prompt_embeds is None: + prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=max_length, + truncation=True, + add_special_tokens=True, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( + text_input_ids, untruncated_ids + ): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {max_length} tokens: {removed_text}" + ) + + prompt_attention_mask = text_inputs.attention_mask + prompt_attention_mask = prompt_attention_mask.to(device) + + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask) + prompt_embeds = prompt_embeds[0] + + if self.text_encoder is not None: + dtype = self.text_encoder.dtype + elif self.transformer is not None: + dtype = self.transformer.dtype + else: + dtype = None + + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1) + prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) + + # get unconditional embeddings for classifier free guidance + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens = [negative_prompt] * batch_size + uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer( + uncond_tokens, + padding="max_length", + max_length=max_length, + truncation=True, + return_attention_mask=True, + add_special_tokens=True, + return_tensors="pt", + ) + negative_prompt_attention_mask = uncond_input.attention_mask + negative_prompt_attention_mask = negative_prompt_attention_mask.to(device) + + negative_prompt_embeds = self.text_encoder( + uncond_input.input_ids.to(device), + attention_mask=negative_prompt_attention_mask, + ) + negative_prompt_embeds = negative_prompt_embeds[0] + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + + negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) + + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1) + negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) + else: + negative_prompt_embeds = None + negative_prompt_attention_mask = None + + return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs( + self, + prompt, + num_frames, + height, + width, + negative_prompt, + callback_steps, + prompt_embeds=None, + negative_prompt_embeds=None, + prompt_attention_mask=None, + negative_prompt_attention_mask=None, + ): + + if num_frames <= 0: + raise ValueError(f"`num_frames` have to be positive but is {num_frames}.") + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + + if (callback_steps is None) or ( + callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) + ): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + + if prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and prompt_attention_mask is None: + raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") + + if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: + raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: + raise ValueError( + "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" + f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" + f" {negative_prompt_attention_mask.shape}." + ) + + + # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing + def _text_preprocessing(self, text, clean_caption=False): + if clean_caption and not is_bs4_available(): + logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")) + logger.warning("Setting `clean_caption` to False...") + clean_caption = False + + if clean_caption and not is_ftfy_available(): + logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")) + logger.warning("Setting `clean_caption` to False...") + clean_caption = False + + if not isinstance(text, (tuple, list)): + text = [text] + + def process(text: str): + if clean_caption: + text = self._clean_caption(text) + text = self._clean_caption(text) + else: + text = text.lower().strip() + return text + + return [process(t) for t in text] + + # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption + def _clean_caption(self, caption): + caption = str(caption) + caption = ul.unquote_plus(caption) + caption = caption.strip().lower() + caption = re.sub("", "person", caption) + # urls: + caption = re.sub( + r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", + # noqa + "", + caption, + ) # regex for urls + caption = re.sub( + r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", + # noqa + "", + caption, + ) # regex for urls + # html: + caption = BeautifulSoup(caption, features="html.parser").text + + # @ + caption = re.sub(r"@[\w\d]+\b", "", caption) + + # 31C0—31EF CJK Strokes + # 31F0—31FF Katakana Phonetic Extensions + # 3200—32FF Enclosed CJK Letters and Months + # 3300—33FF CJK Compatibility + # 3400—4DBF CJK Unified Ideographs Extension A + # 4DC0—4DFF Yijing Hexagram Symbols + # 4E00—9FFF CJK Unified Ideographs + caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) + caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) + caption = re.sub(r"[\u3200-\u32ff]+", "", caption) + caption = re.sub(r"[\u3300-\u33ff]+", "", caption) + caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) + caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) + # caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) + ####################################################### + + # все виды тире / all types of dash --> "-" + caption = re.sub( + r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", + # noqa + "-", + caption, + ) + + # кавычки к одному стандарту + caption = re.sub(r"[`´«»“”¨]", '"', caption) + caption = re.sub(r"[‘’]", "'", caption) + + # " + caption = re.sub(r""?", "", caption) + # & + caption = re.sub(r"&", "", caption) + + # ip adresses: + caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) + + # article ids: + caption = re.sub(r"\d:\d\d\s+$", "", caption) + + # \n + caption = re.sub(r"\\n", " ", caption) + + # "#123" + caption = re.sub(r"#\d{1,3}\b", "", caption) + # "#12345.." + caption = re.sub(r"#\d{5,}\b", "", caption) + # "123456.." + caption = re.sub(r"\b\d{6,}\b", "", caption) + # filenames: + caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption) + + # + caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" + caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" + + caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT + caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " + + # this-is-my-cute-cat / this_is_my_cute_cat + regex2 = re.compile(r"(?:\-|\_)") + if len(re.findall(regex2, caption)) > 3: + caption = re.sub(regex2, " ", caption) + + caption = ftfy.fix_text(caption) + caption = html.unescape(html.unescape(caption)) + + caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 + caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc + caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 + + caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) + caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) + caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) + caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption) + caption = re.sub(r"\bpage\s+\d+\b", "", caption) + + caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a... + + caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) + + caption = re.sub(r"\b\s+\:\s+", r": ", caption) + caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) + caption = re.sub(r"\s+", " ", caption) + + caption.strip() + + caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) + caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) + caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) + caption = re.sub(r"^\.\S+$", "", caption) + return caption.strip() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents + def prepare_latents( + self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None + ): + shape = ( + batch_size, + num_channels_latents, + (math.ceil((int(num_frames) - 1) / self.vae.vae_scale_factor[0]) + 1) + if int(num_frames) % 2 == 1 + else math.ceil(int(num_frames) / self.vae.vae_scale_factor[0]), + math.ceil(int(height) / self.vae.vae_scale_factor[1]), + math.ceil(int(width) / self.vae.vae_scale_factor[2]), + ) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + + # scale the initial noise by the standard deviation required by the scheduler + latents = latents * self.scheduler.init_noise_sigma + + + return latents + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + negative_prompt: str = "", + num_inference_steps: int = 100, + timesteps: List[int] = None, + guidance_scale: float = 7.5, + num_images_per_prompt: Optional[int] = 1, + num_frames: Optional[int] = None, + height: Optional[int] = None, + width: Optional[int] = None, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + prompt_attention_mask: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, + callback_steps: int = 1, + clean_caption: bool = True, + max_sequence_length: int = 512, + verbose: bool = True, + ) -> Union[AllegroPipelineOutput, Tuple]: + """ + Function invoked when calling the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. + instead. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + num_inference_steps (`int`, *optional*, defaults to 100): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + timesteps (`List[int]`, *optional*): + Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` + timesteps are used. Must be in descending order. + guidance_scale (`float`, *optional*, defaults to 7.0): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + num_frames: (`int`, *optional*, defaults to 88): + The number controls the generated video frames. + height (`int`, *optional*, defaults to self.unet.config.sample_size): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to self.unet.config.sample_size): + The width in pixels of the generated image. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to + [`schedulers.DDIMScheduler`], will be ignored for others. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor will ge generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not + provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. + negative_prompt_attention_mask (`torch.FloatTensor`, *optional*): + Pre-generated attention mask for negative text embeddings. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. + callback (`Callable`, *optional*): + A function that will be called every `callback_steps` steps during inference. The function will be + called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. + callback_steps (`int`, *optional*, defaults to 1): + The frequency at which the `callback` function will be called. If not specified, the callback will be + called at every step. + clean_caption (`bool`, *optional*, defaults to `True`): + Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to + be installed. If the dependencies are not installed, the embeddings will be created from the raw + prompt. + max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. + + Examples: + + Returns: + [`~pipelines.ImagePipelineOutput`] or `tuple`: + If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is + returned where the first element is a list with the generated images + """ + # 1. Check inputs. Raise error if not correct + num_frames = num_frames or self.transformer.config.sample_size_t * self.vae.vae_scale_factor[0] + height = height or self.transformer.config.sample_size[0] * self.vae.vae_scale_factor[1] + width = width or self.transformer.config.sample_size[1] * self.vae.vae_scale_factor[2] + + self.check_inputs( + prompt, + num_frames, + height, + width, + negative_prompt, + callback_steps, + prompt_embeds, + negative_prompt_embeds, + prompt_attention_mask, + negative_prompt_attention_mask, + ) + + # 2. Default height and width to transformer + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + # 3. Encode input prompt + ( + prompt_embeds, + prompt_attention_mask, + negative_prompt_embeds, + negative_prompt_attention_mask, + ) = self.encode_prompt( + prompt, + do_classifier_free_guidance, + negative_prompt=negative_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + prompt_attention_mask=prompt_attention_mask, + negative_prompt_attention_mask=negative_prompt_attention_mask, + clean_caption=clean_caption, + max_sequence_length=max_sequence_length, + ) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0) + + # 4. Prepare timesteps + timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) + self.scheduler.set_timesteps(num_inference_steps, device=device) + + # 5. Prepare latents. + latent_channels = self.transformer.config.in_channels + latents = self.prepare_latents( + batch_size * num_images_per_prompt, + latent_channels, + num_frames, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 6.1 Prepare micro-conditions. + added_cond_kwargs = {"resolution": None, "aspect_ratio": None} + + # 7. Denoising loop + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + + progress_wrap = tqdm.tqdm if verbose else (lambda x: x) + for i, t in progress_wrap(list(enumerate(timesteps))): + + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + current_timestep = t + if not torch.is_tensor(current_timestep): + # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can + # This would be a good case for the `match` statement (Python 3.10+) + is_mps = latent_model_input.device.type == "mps" + if isinstance(current_timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device) + elif len(current_timestep.shape) == 0: + current_timestep = current_timestep[None].to(latent_model_input.device) + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + current_timestep = current_timestep.expand(latent_model_input.shape[0]) + + if prompt_embeds.ndim == 3: + prompt_embeds = prompt_embeds.unsqueeze(1) # b l d -> b 1 l d + if prompt_attention_mask.ndim == 2: + prompt_attention_mask = prompt_attention_mask.unsqueeze(1) # b l -> b 1 l + # prepare attention_mask. + # b c t h w -> b t h w + attention_mask = torch.ones_like(latent_model_input)[:, 0] + # predict noise model_output + noise_pred = self.transformer( + latent_model_input, + attention_mask=attention_mask, + encoder_hidden_states=prompt_embeds, + encoder_attention_mask=prompt_attention_mask, + timestep=current_timestep, + added_cond_kwargs=added_cond_kwargs, + return_dict=False, + )[0] + + # perform guidance + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + # learned sigma + if self.transformer.config.out_channels // 2 == latent_channels: + noise_pred = noise_pred.chunk(2, dim=1)[0] + else: + noise_pred = noise_pred + + # compute previous image: x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, "order", 1) + callback(step_idx, t, latents) + + if not output_type == "latents": + video = self.decode_latents(latents) + video = video[:, :num_frames, :height, :width] + else: + video = latents + return AllegroPipelineOutput(video=video) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (video,) + + return AllegroPipelineOutput(video=video) + + def decode_latents(self, latents): + video = self.vae.decode(latents.to(self.vae.dtype) / self.vae.scale_factor).sample + # b t c h w -> b t h w c + video = ((video / 2.0 + 0.5).clamp(0, 1) * 255).to(dtype=torch.uint8).cpu().permute(0, 1, 3, 4, 2).contiguous() + return video diff --git a/scheduler/scheduler_config.json b/scheduler/scheduler_config.json new file mode 100644 index 0000000..da642e9 --- /dev/null +++ b/scheduler/scheduler_config.json @@ -0,0 +1,13 @@ +{ + "_class_name": "EulerAncestralDiscreteScheduler", + "_diffusers_version": "0.28.0", + "beta_end": 0.02, + "beta_schedule": "linear", + "beta_start": 0.0001, + "num_train_timesteps": 1000, + "prediction_type": "epsilon", + "rescale_betas_zero_snr": false, + "steps_offset": 0, + "timestep_spacing": "linspace", + "trained_betas": null +} diff --git a/text_encoder/config.json b/text_encoder/config.json new file mode 100644 index 0000000..b4b23f4 --- /dev/null +++ b/text_encoder/config.json @@ -0,0 +1,30 @@ +{ + "architectures": [ + "T5EncoderModel" + ], + "d_ff": 10240, + "d_kv": 64, + "d_model": 4096, + "decoder_start_token_id": 0, + "dense_act_fn": "gelu_new", + "dropout_rate": 0.1, + "eos_token_id": 1, + "feed_forward_proj": "gated-gelu", + "initializer_factor": 1.0, + "is_encoder_decoder": true, + "is_gated_act": true, + "layer_norm_epsilon": 1e-06, + "model_type": "t5", + "num_decoder_layers": 24, + "num_heads": 64, + "num_layers": 24, + "output_past": true, + "pad_token_id": 0, + "relative_attention_max_distance": 128, + "relative_attention_num_buckets": 32, + "tie_word_embeddings": false, + "torch_dtype": "float32", + "transformers_version": "4.21.1", + "use_cache": true, + "vocab_size": 32128 +} \ No newline at end of file diff --git a/text_encoder/pytorch_model-00001-of-00002.bin b/text_encoder/pytorch_model-00001-of-00002.bin new file mode 100644 index 0000000..a04a868 --- /dev/null +++ b/text_encoder/pytorch_model-00001-of-00002.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2f71ad0624095dae788b1023081dda1b4040bd24f7244a5b5b46eebc09825839 +size 9452285635 diff --git a/text_encoder/pytorch_model-00002-of-00002.bin b/text_encoder/pytorch_model-00002-of-00002.bin new file mode 100644 index 0000000..9fda322 --- /dev/null +++ b/text_encoder/pytorch_model-00002-of-00002.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4f68f80678299ac59f69b3550ebd47b966571920d8f9e71f42ab61fabaaed868 +size 9597031749 diff --git a/text_encoder/pytorch_model.bin.index.json b/text_encoder/pytorch_model.bin.index.json new file mode 100644 index 0000000..1a33111 --- /dev/null +++ b/text_encoder/pytorch_model.bin.index.json @@ -0,0 +1,227 @@ +{ + "metadata": { + "total_size": 19575627776 + }, + "weight_map": { + "encoder.block.0.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.0.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.0.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.0.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.0.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.0.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.0.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.0.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.0.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.1.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.1.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.1.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.1.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.1.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.1.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.1.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.1.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.1.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.10.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.10.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.10.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.10.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.10.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.10.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.10.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.10.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.10.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.11.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.11.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.11.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.11.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.11.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.11.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.11.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.11.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.11.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.12.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.12.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.12.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.12.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.12.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.12.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.12.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.12.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.12.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.13.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.13.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.13.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.13.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.13.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.13.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.13.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.13.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.13.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.14.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.14.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.14.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.14.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.14.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.14.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.14.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.14.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.14.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.15.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.15.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.15.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.15.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.15.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.15.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.15.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.15.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.15.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.16.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.16.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.16.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.16.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.16.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.16.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.16.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.16.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.16.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.17.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.17.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.17.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.17.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.17.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.17.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.17.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.17.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.17.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.18.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.18.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.18.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.18.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.18.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.18.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.18.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.18.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.18.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.19.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.19.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.19.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.19.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.19.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.19.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.19.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.19.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.19.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.2.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.2.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.2.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.2.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.2.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.2.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.2.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.2.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.2.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.20.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.20.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.20.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.20.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.20.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.20.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.20.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.20.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.20.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.21.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.21.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.21.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.21.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.21.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.21.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.21.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.21.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.21.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.22.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.22.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.22.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.22.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.22.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.22.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.22.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.22.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.22.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.23.layer.0.SelfAttention.k.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.23.layer.0.SelfAttention.o.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.23.layer.0.SelfAttention.q.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.23.layer.0.SelfAttention.v.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.23.layer.0.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.23.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.23.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.23.layer.1.DenseReluDense.wo.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.23.layer.1.layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "encoder.block.3.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.3.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.3.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.3.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.3.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.3.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.3.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.3.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.3.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.4.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.4.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.4.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.4.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.4.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.4.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.4.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.4.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.4.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.5.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.5.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.5.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.5.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.5.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.5.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.5.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.5.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.5.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.6.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.6.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.6.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.6.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.6.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.6.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.6.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.6.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.6.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.7.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.7.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.7.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.7.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.7.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.7.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.7.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.7.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.7.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.8.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.8.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.8.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.8.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.8.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.8.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.8.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.8.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.8.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.9.layer.0.SelfAttention.k.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.9.layer.0.SelfAttention.o.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.9.layer.0.SelfAttention.q.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.9.layer.0.SelfAttention.v.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.9.layer.0.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.9.layer.1.DenseReluDense.wi_0.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.9.layer.1.DenseReluDense.wi_1.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.9.layer.1.DenseReluDense.wo.weight": "pytorch_model-00001-of-00002.bin", + "encoder.block.9.layer.1.layer_norm.weight": "pytorch_model-00001-of-00002.bin", + "encoder.embed_tokens.weight": "pytorch_model-00001-of-00002.bin", + "encoder.final_layer_norm.weight": "pytorch_model-00002-of-00002.bin", + "shared.weight": "pytorch_model-00001-of-00002.bin" + } +} diff --git a/tokenizer/added_tokens.json b/tokenizer/added_tokens.json new file mode 100644 index 0000000..3f51320 --- /dev/null +++ b/tokenizer/added_tokens.json @@ -0,0 +1,102 @@ +{ + "": 32099, + "": 32089, + "": 32088, + "": 32087, + "": 32086, + "": 32085, + "": 32084, + "": 32083, + "": 32082, + "": 32081, + "": 32080, + "": 32098, + "": 32079, + "": 32078, + "": 32077, + "": 32076, + "": 32075, + "": 32074, + "": 32073, + "": 32072, + "": 32071, + "": 32070, + "": 32097, + "": 32069, + "": 32068, + "": 32067, + "": 32066, + "": 32065, + "": 32064, + "": 32063, + "": 32062, + "": 32061, + "": 32060, + "": 32096, + "": 32059, + "": 32058, + "": 32057, + "": 32056, + "": 32055, + "": 32054, + "": 32053, + "": 32052, + "": 32051, + "": 32050, + "": 32095, + "": 32049, + "": 32048, + "": 32047, + "": 32046, + "": 32045, + "": 32044, + "": 32043, + "": 32042, + "": 32041, + "": 32040, + "": 32094, + "": 32039, + "": 32038, + "": 32037, + "": 32036, + "": 32035, + "": 32034, + "": 32033, + "": 32032, + "": 32031, + "": 32030, + "": 32093, + "": 32029, + "": 32028, + "": 32027, + "": 32026, + "": 32025, + "": 32024, + "": 32023, + "": 32022, + "": 32021, + "": 32020, + "": 32092, + "": 32019, + "": 32018, + "": 32017, + "": 32016, + "": 32015, + "": 32014, + "": 32013, + "": 32012, + "": 32011, + "": 32010, + "": 32091, + "": 32009, + "": 32008, + "": 32007, + "": 32006, + "": 32005, + "": 32004, + "": 32003, + "": 32002, + "": 32001, + "": 32000, + "": 32090 +} diff --git a/tokenizer/special_tokens_map.json b/tokenizer/special_tokens_map.json new file mode 100644 index 0000000..17ade34 --- /dev/null +++ b/tokenizer/special_tokens_map.json @@ -0,0 +1,125 @@ +{ + "additional_special_tokens": [ + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "" + ], + "eos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "unk_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/tokenizer/spiece.model b/tokenizer/spiece.model new file mode 100644 index 0000000..317a5cc --- /dev/null +++ b/tokenizer/spiece.model @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86 +size 791656 diff --git a/tokenizer/tokenizer_config.json b/tokenizer/tokenizer_config.json new file mode 100644 index 0000000..15377e7 --- /dev/null +++ b/tokenizer/tokenizer_config.json @@ -0,0 +1,940 @@ +{ + "add_prefix_space": true, + "added_tokens_decoder": { + "0": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "1": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "2": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "32000": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32001": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32002": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32003": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32004": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32005": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32006": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32007": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32008": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32009": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32010": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32011": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32012": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32013": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32014": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32015": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32016": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32017": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32018": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32019": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32020": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32021": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32022": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32023": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32024": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32025": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32026": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32027": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32028": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32029": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32030": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32031": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32032": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32033": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32034": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32035": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32036": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32037": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32038": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32039": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32040": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32041": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32042": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32043": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32044": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32045": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32046": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32047": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32048": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32049": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32050": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32051": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32052": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32053": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32054": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32055": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32056": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32057": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32058": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32059": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32060": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32061": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32062": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32063": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32064": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32065": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32066": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32067": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32068": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32069": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32070": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32071": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32072": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32073": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32074": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32075": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32076": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32077": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32078": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32079": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32080": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32081": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32082": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32083": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32084": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32085": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32086": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32087": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32088": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32089": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32090": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32091": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32092": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32093": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32094": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32095": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32096": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32097": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32098": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + }, + "32099": { + "content": "", + "lstrip": true, + "normalized": false, + "rstrip": true, + "single_word": false, + "special": true + } + }, + "additional_special_tokens": [ + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "", + "" + ], + "clean_up_tokenization_spaces": true, + "eos_token": "", + "extra_ids": 100, + "legacy": true, + "model_max_length": 512, + "pad_token": "", + "sp_model_kwargs": {}, + "tokenizer_class": "T5Tokenizer", + "unk_token": "" +} diff --git a/transformer/config.json b/transformer/config.json new file mode 100644 index 0000000..0eb7784 --- /dev/null +++ b/transformer/config.json @@ -0,0 +1,39 @@ +{ + "_class_name": "AllegroTransformer3DModel", + "_diffusers_version": "0.28.0", + "_name_or_path": "/cpfs/data/user/yanghuan/expr/rsora/RSoraT2V_L32AH24AD96_122_20240918_88x720x1280_fps15_t5/checkpoint-38000/model", + "activation_fn": "gelu-approximate", + "attention_bias": true, + "attention_head_dim": 96, + "ca_attention_mode": "xformers", + "caption_channels": 4096, + "cross_attention_dim": 2304, + "double_self_attention": false, + "downsampler": null, + "dropout": 0.0, + "in_channels": 4, + "interpolation_scale_h": 2.0, + "interpolation_scale_t": 2.2, + "interpolation_scale_w": 2.0, + "model_max_length": 300, + "norm_elementwise_affine": false, + "norm_eps": 1e-06, + "norm_type": "ada_norm_single", + "num_attention_heads": 24, + "num_embeds_ada_norm": 1000, + "num_layers": 32, + "only_cross_attention": false, + "out_channels": 4, + "patch_size": 2, + "patch_size_t": 1, + "sa_attention_mode": "flash", + "sample_size": [ + 90, + 160 + ], + "sample_size_t": 22, + "upcast_attention": false, + "use_additional_conditions": null, + "use_linear_projection": false, + "use_rope": true +} \ No newline at end of file diff --git a/transformer/diffusion_pytorch_model.safetensors b/transformer/diffusion_pytorch_model.safetensors new file mode 100644 index 0000000..c5aebd0 --- /dev/null +++ b/transformer/diffusion_pytorch_model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6927dcc812841c1da549bf11c97ddf30532aee0e708a6642fa64cf8e0dfcdef7 +size 5543894392 diff --git a/transformer/transformer_3d_allegro.py b/transformer/transformer_3d_allegro.py new file mode 100644 index 0000000..efc358d --- /dev/null +++ b/transformer/transformer_3d_allegro.py @@ -0,0 +1,1776 @@ +# Adapted from Open-Sora-Plan + +# This source code is licensed under the license found in the +# LICENSE file in the root directory of this source tree. +# -------------------------------------------------------- +# References: +# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan +# -------------------------------------------------------- + + +import json +import os +from dataclasses import dataclass +from functools import partial +from importlib import import_module +from typing import Any, Callable, Dict, Optional, Tuple + +import numpy as np +import torch +import collections +import torch.nn.functional as F +from torch.nn.attention import SDPBackend, sdpa_kernel +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.models.activations import GEGLU, GELU, ApproximateGELU +from diffusers.models.attention_processor import ( + AttnAddedKVProcessor, + AttnAddedKVProcessor2_0, + AttnProcessor, + CustomDiffusionAttnProcessor, + CustomDiffusionAttnProcessor2_0, + CustomDiffusionXFormersAttnProcessor, + LoRAAttnAddedKVProcessor, + LoRAAttnProcessor, + LoRAAttnProcessor2_0, + LoRAXFormersAttnProcessor, + SlicedAttnAddedKVProcessor, + SlicedAttnProcessor, + SpatialNorm, + XFormersAttnAddedKVProcessor, + XFormersAttnProcessor, +) +from diffusers.models.embeddings import SinusoidalPositionalEmbedding, TimestepEmbedding, Timesteps +from diffusers.models.modeling_utils import ModelMixin +from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormZero +from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_xformers_available +from diffusers.utils.torch_utils import maybe_allow_in_graph +from einops import rearrange, repeat +from torch import nn +from diffusers.models.embeddings import PixArtAlphaTextProjection + + +if is_xformers_available(): + import xformers + import xformers.ops +else: + xformers = None + +from diffusers.utils import logging + +logger = logging.get_logger(__name__) + + +def to_2tuple(x): + if isinstance(x, collections.abc.Iterable): + return x + return (x, x) + +class CombinedTimestepSizeEmbeddings(nn.Module): + """ + For PixArt-Alpha. + + Reference: + https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29 + """ + + def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False): + super().__init__() + + self.outdim = size_emb_dim + self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) + self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) + + self.use_additional_conditions = use_additional_conditions + if use_additional_conditions: + self.use_additional_conditions = True + self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) + self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) + self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) + + def apply_condition(self, size: torch.Tensor, batch_size: int, embedder: nn.Module): + if size.ndim == 1: + size = size[:, None] + + if size.shape[0] != batch_size: + size = size.repeat(batch_size // size.shape[0], 1) + if size.shape[0] != batch_size: + raise ValueError(f"`batch_size` should be {size.shape[0]} but found {batch_size}.") + + current_batch_size, dims = size.shape[0], size.shape[1] + size = size.reshape(-1) + size_freq = self.additional_condition_proj(size).to(size.dtype) + + size_emb = embedder(size_freq) + size_emb = size_emb.reshape(current_batch_size, dims * self.outdim) + return size_emb + + def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype): + timesteps_proj = self.time_proj(timestep) + timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D) + + if self.use_additional_conditions: + resolution = self.apply_condition(resolution, batch_size=batch_size, embedder=self.resolution_embedder) + aspect_ratio = self.apply_condition( + aspect_ratio, batch_size=batch_size, embedder=self.aspect_ratio_embedder + ) + conditioning = timesteps_emb + torch.cat([resolution, aspect_ratio], dim=1) + else: + conditioning = timesteps_emb + + return conditioning + + +class PositionGetter3D(object): + """ return positions of patches """ + + def __init__(self, ): + self.cache_positions = {} + + def __call__(self, b, t, h, w, device): + if not (b, t,h,w) in self.cache_positions: + x = torch.arange(w, device=device) + y = torch.arange(h, device=device) + z = torch.arange(t, device=device) + pos = torch.cartesian_prod(z, y, x) + + pos = pos.reshape(t * h * w, 3).transpose(0, 1).reshape(3, 1, -1).contiguous().expand(3, b, -1).clone() + poses = (pos[0].contiguous(), pos[1].contiguous(), pos[2].contiguous()) + max_poses = (int(poses[0].max()), int(poses[1].max()), int(poses[2].max())) + + self.cache_positions[b, t, h, w] = (poses, max_poses) + pos = self.cache_positions[b, t, h, w] + + return pos + + +class RoPE3D(torch.nn.Module): + + def __init__(self, freq=10000.0, F0=1.0, interpolation_scale_thw=(1, 1, 1)): + super().__init__() + self.base = freq + self.F0 = F0 + self.interpolation_scale_t = interpolation_scale_thw[0] + self.interpolation_scale_h = interpolation_scale_thw[1] + self.interpolation_scale_w = interpolation_scale_thw[2] + self.cache = {} + + def get_cos_sin(self, D, seq_len, device, dtype, interpolation_scale=1): + if (D, seq_len, device, dtype) not in self.cache: + inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D)) + t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype) / interpolation_scale + freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype) + freqs = torch.cat((freqs, freqs), dim=-1) + cos = freqs.cos() # (Seq, Dim) + sin = freqs.sin() + self.cache[D, seq_len, device, dtype] = (cos, sin) + return self.cache[D, seq_len, device, dtype] + + @staticmethod + def rotate_half(x): + x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2:] + return torch.cat((-x2, x1), dim=-1) + + def apply_rope1d(self, tokens, pos1d, cos, sin): + assert pos1d.ndim == 2 + + # for (batch_size x ntokens x nheads x dim) + cos = torch.nn.functional.embedding(pos1d, cos)[:, None, :, :] + sin = torch.nn.functional.embedding(pos1d, sin)[:, None, :, :] + return (tokens * cos) + (self.rotate_half(tokens) * sin) + + def forward(self, tokens, positions): + """ + input: + * tokens: batch_size x nheads x ntokens x dim + * positions: batch_size x ntokens x 3 (t, y and x position of each token) + output: + * tokens after appplying RoPE3D (batch_size x nheads x ntokens x x dim) + """ + assert tokens.size(3) % 3 == 0, "number of dimensions should be a multiple of three" + D = tokens.size(3) // 3 + poses, max_poses = positions + assert len(poses) == 3 and poses[0].ndim == 2# Batch, Seq, 3 + cos_t, sin_t = self.get_cos_sin(D, max_poses[0] + 1, tokens.device, tokens.dtype, self.interpolation_scale_t) + cos_y, sin_y = self.get_cos_sin(D, max_poses[1] + 1, tokens.device, tokens.dtype, self.interpolation_scale_h) + cos_x, sin_x = self.get_cos_sin(D, max_poses[2] + 1, tokens.device, tokens.dtype, self.interpolation_scale_w) + # split features into three along the feature dimension, and apply rope1d on each half + t, y, x = tokens.chunk(3, dim=-1) + t = self.apply_rope1d(t, poses[0], cos_t, sin_t) + y = self.apply_rope1d(y, poses[1], cos_y, sin_y) + x = self.apply_rope1d(x, poses[2], cos_x, sin_x) + tokens = torch.cat((t, y, x), dim=-1) + return tokens + +class PatchEmbed2D(nn.Module): + """2D Image to Patch Embedding""" + + def __init__( + self, + num_frames=1, + height=224, + width=224, + patch_size_t=1, + patch_size=16, + in_channels=3, + embed_dim=768, + layer_norm=False, + flatten=True, + bias=True, + interpolation_scale=(1, 1), + interpolation_scale_t=1, + use_abs_pos=False, + ): + super().__init__() + self.use_abs_pos = use_abs_pos + self.flatten = flatten + self.layer_norm = layer_norm + + self.proj = nn.Conv2d( + in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=(patch_size, patch_size), bias=bias + ) + if layer_norm: + self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6) + else: + self.norm = None + + self.patch_size_t = patch_size_t + self.patch_size = patch_size + + def forward(self, latent): + b, _, _, _, _ = latent.shape + video_latent = None + + latent = rearrange(latent, 'b c t h w -> (b t) c h w') + + latent = self.proj(latent) + if self.flatten: + latent = latent.flatten(2).transpose(1, 2) # BT C H W -> BT N C + if self.layer_norm: + latent = self.norm(latent) + + latent = rearrange(latent, '(b t) n c -> b (t n) c', b=b) + video_latent = latent + + return video_latent + + +@maybe_allow_in_graph +class Attention(nn.Module): + r""" + A cross attention layer. + + Parameters: + query_dim (`int`): + The number of channels in the query. + cross_attention_dim (`int`, *optional*): + The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. + heads (`int`, *optional*, defaults to 8): + The number of heads to use for multi-head attention. + dim_head (`int`, *optional*, defaults to 64): + The number of channels in each head. + dropout (`float`, *optional*, defaults to 0.0): + The dropout probability to use. + bias (`bool`, *optional*, defaults to False): + Set to `True` for the query, key, and value linear layers to contain a bias parameter. + upcast_attention (`bool`, *optional*, defaults to False): + Set to `True` to upcast the attention computation to `float32`. + upcast_softmax (`bool`, *optional*, defaults to False): + Set to `True` to upcast the softmax computation to `float32`. + cross_attention_norm (`str`, *optional*, defaults to `None`): + The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. + cross_attention_norm_num_groups (`int`, *optional*, defaults to 32): + The number of groups to use for the group norm in the cross attention. + added_kv_proj_dim (`int`, *optional*, defaults to `None`): + The number of channels to use for the added key and value projections. If `None`, no projection is used. + norm_num_groups (`int`, *optional*, defaults to `None`): + The number of groups to use for the group norm in the attention. + spatial_norm_dim (`int`, *optional*, defaults to `None`): + The number of channels to use for the spatial normalization. + out_bias (`bool`, *optional*, defaults to `True`): + Set to `True` to use a bias in the output linear layer. + scale_qk (`bool`, *optional*, defaults to `True`): + Set to `True` to scale the query and key by `1 / sqrt(dim_head)`. + only_cross_attention (`bool`, *optional*, defaults to `False`): + Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if + `added_kv_proj_dim` is not `None`. + eps (`float`, *optional*, defaults to 1e-5): + An additional value added to the denominator in group normalization that is used for numerical stability. + rescale_output_factor (`float`, *optional*, defaults to 1.0): + A factor to rescale the output by dividing it with this value. + residual_connection (`bool`, *optional*, defaults to `False`): + Set to `True` to add the residual connection to the output. + _from_deprecated_attn_block (`bool`, *optional*, defaults to `False`): + Set to `True` if the attention block is loaded from a deprecated state dict. + processor (`AttnProcessor`, *optional*, defaults to `None`): + The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and + `AttnProcessor` otherwise. + """ + + def __init__( + self, + query_dim: int, + cross_attention_dim: Optional[int] = None, + heads: int = 8, + dim_head: int = 64, + dropout: float = 0.0, + bias: bool = False, + upcast_attention: bool = False, + upcast_softmax: bool = False, + cross_attention_norm: Optional[str] = None, + cross_attention_norm_num_groups: int = 32, + added_kv_proj_dim: Optional[int] = None, + norm_num_groups: Optional[int] = None, + spatial_norm_dim: Optional[int] = None, + out_bias: bool = True, + scale_qk: bool = True, + only_cross_attention: bool = False, + eps: float = 1e-5, + rescale_output_factor: float = 1.0, + residual_connection: bool = False, + _from_deprecated_attn_block: bool = False, + processor: Optional["AttnProcessor"] = None, + attention_mode: str = "xformers", + use_rope: bool = False, + interpolation_scale_thw=None, + ): + super().__init__() + self.inner_dim = dim_head * heads + self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim + self.upcast_attention = upcast_attention + self.upcast_softmax = upcast_softmax + self.rescale_output_factor = rescale_output_factor + self.residual_connection = residual_connection + self.dropout = dropout + self.use_rope = use_rope + + # we make use of this private variable to know whether this class is loaded + # with an deprecated state dict so that we can convert it on the fly + self._from_deprecated_attn_block = _from_deprecated_attn_block + + self.scale_qk = scale_qk + self.scale = dim_head**-0.5 if self.scale_qk else 1.0 + + self.heads = heads + # for slice_size > 0 the attention score computation + # is split across the batch axis to save memory + # You can set slice_size with `set_attention_slice` + self.sliceable_head_dim = heads + + self.added_kv_proj_dim = added_kv_proj_dim + self.only_cross_attention = only_cross_attention + + if self.added_kv_proj_dim is None and self.only_cross_attention: + raise ValueError( + "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." + ) + + if norm_num_groups is not None: + self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True) + else: + self.group_norm = None + + if spatial_norm_dim is not None: + self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim) + else: + self.spatial_norm = None + + if cross_attention_norm is None: + self.norm_cross = None + elif cross_attention_norm == "layer_norm": + self.norm_cross = nn.LayerNorm(self.cross_attention_dim) + elif cross_attention_norm == "group_norm": + if self.added_kv_proj_dim is not None: + # The given `encoder_hidden_states` are initially of shape + # (batch_size, seq_len, added_kv_proj_dim) before being projected + # to (batch_size, seq_len, cross_attention_dim). The norm is applied + # before the projection, so we need to use `added_kv_proj_dim` as + # the number of channels for the group norm. + norm_cross_num_channels = added_kv_proj_dim + else: + norm_cross_num_channels = self.cross_attention_dim + + self.norm_cross = nn.GroupNorm( + num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True + ) + else: + raise ValueError( + f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" + ) + + linear_cls = nn.Linear + + + self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias) + + if not self.only_cross_attention: + # only relevant for the `AddedKVProcessor` classes + self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) + self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) + else: + self.to_k = None + self.to_v = None + + if self.added_kv_proj_dim is not None: + self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim) + self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim) + + self.to_out = nn.ModuleList([]) + self.to_out.append(linear_cls(self.inner_dim, query_dim, bias=out_bias)) + self.to_out.append(nn.Dropout(dropout)) + + # set attention processor + # We use the AttnProcessor2_0 by default when torch 2.x is used which uses + # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention + # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 + if processor is None: + processor = ( + AttnProcessor2_0( + attention_mode, + use_rope, + interpolation_scale_thw=interpolation_scale_thw, + ) + if hasattr(F, "scaled_dot_product_attention") and self.scale_qk + else AttnProcessor() + ) + self.set_processor(processor) + + def set_use_memory_efficient_attention_xformers( + self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None + ) -> None: + r""" + Set whether to use memory efficient attention from `xformers` or not. + + Args: + use_memory_efficient_attention_xformers (`bool`): + Whether to use memory efficient attention from `xformers` or not. + attention_op (`Callable`, *optional*): + The attention operation to use. Defaults to `None` which uses the default attention operation from + `xformers`. + """ + is_lora = hasattr(self, "processor") + is_custom_diffusion = hasattr(self, "processor") and isinstance( + self.processor, + (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0), + ) + is_added_kv_processor = hasattr(self, "processor") and isinstance( + self.processor, + ( + AttnAddedKVProcessor, + AttnAddedKVProcessor2_0, + SlicedAttnAddedKVProcessor, + XFormersAttnAddedKVProcessor, + LoRAAttnAddedKVProcessor, + ), + ) + + if use_memory_efficient_attention_xformers: + if is_added_kv_processor and (is_lora or is_custom_diffusion): + raise NotImplementedError( + f"Memory efficient attention is currently not supported for LoRA or custom diffusion for attention processor type {self.processor}" + ) + if not is_xformers_available(): + raise ModuleNotFoundError( + ( + "Refer to https://github.com/facebookresearch/xformers for more information on how to install" + " xformers" + ), + name="xformers", + ) + elif not torch.cuda.is_available(): + raise ValueError( + "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is" + " only available for GPU " + ) + else: + try: + # Make sure we can run the memory efficient attention + _ = xformers.ops.memory_efficient_attention( + torch.randn((1, 2, 40), device="cuda"), + torch.randn((1, 2, 40), device="cuda"), + torch.randn((1, 2, 40), device="cuda"), + ) + except Exception as e: + raise e + + if is_lora: + # TODO (sayakpaul): should we throw a warning if someone wants to use the xformers + # variant when using PT 2.0 now that we have LoRAAttnProcessor2_0? + processor = LoRAXFormersAttnProcessor( + hidden_size=self.processor.hidden_size, + cross_attention_dim=self.processor.cross_attention_dim, + rank=self.processor.rank, + attention_op=attention_op, + ) + processor.load_state_dict(self.processor.state_dict()) + processor.to(self.processor.to_q_lora.up.weight.device) + elif is_custom_diffusion: + processor = CustomDiffusionXFormersAttnProcessor( + train_kv=self.processor.train_kv, + train_q_out=self.processor.train_q_out, + hidden_size=self.processor.hidden_size, + cross_attention_dim=self.processor.cross_attention_dim, + attention_op=attention_op, + ) + processor.load_state_dict(self.processor.state_dict()) + if hasattr(self.processor, "to_k_custom_diffusion"): + processor.to(self.processor.to_k_custom_diffusion.weight.device) + elif is_added_kv_processor: + # TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP + # which uses this type of cross attention ONLY because the attention mask of format + # [0, ..., -10.000, ..., 0, ...,] is not supported + # throw warning + logger.info( + "Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation." + ) + processor = XFormersAttnAddedKVProcessor(attention_op=attention_op) + else: + processor = XFormersAttnProcessor(attention_op=attention_op) + else: + if is_lora: + attn_processor_class = ( + LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor + ) + processor = attn_processor_class( + hidden_size=self.processor.hidden_size, + cross_attention_dim=self.processor.cross_attention_dim, + rank=self.processor.rank, + ) + processor.load_state_dict(self.processor.state_dict()) + processor.to(self.processor.to_q_lora.up.weight.device) + elif is_custom_diffusion: + attn_processor_class = ( + CustomDiffusionAttnProcessor2_0 + if hasattr(F, "scaled_dot_product_attention") + else CustomDiffusionAttnProcessor + ) + processor = attn_processor_class( + train_kv=self.processor.train_kv, + train_q_out=self.processor.train_q_out, + hidden_size=self.processor.hidden_size, + cross_attention_dim=self.processor.cross_attention_dim, + ) + processor.load_state_dict(self.processor.state_dict()) + if hasattr(self.processor, "to_k_custom_diffusion"): + processor.to(self.processor.to_k_custom_diffusion.weight.device) + else: + # set attention processor + # We use the AttnProcessor2_0 by default when torch 2.x is used which uses + # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention + # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 + processor = ( + AttnProcessor2_0() + if hasattr(F, "scaled_dot_product_attention") and self.scale_qk + else AttnProcessor() + ) + + self.set_processor(processor) + + def set_attention_slice(self, slice_size: int) -> None: + r""" + Set the slice size for attention computation. + + Args: + slice_size (`int`): + The slice size for attention computation. + """ + if slice_size is not None and slice_size > self.sliceable_head_dim: + raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") + + if slice_size is not None and self.added_kv_proj_dim is not None: + processor = SlicedAttnAddedKVProcessor(slice_size) + elif slice_size is not None: + processor = SlicedAttnProcessor(slice_size) + elif self.added_kv_proj_dim is not None: + processor = AttnAddedKVProcessor() + else: + # set attention processor + # We use the AttnProcessor2_0 by default when torch 2.x is used which uses + # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention + # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 + processor = ( + AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() + ) + + self.set_processor(processor) + + def set_processor(self, processor: "AttnProcessor", _remove_lora: bool = False) -> None: + r""" + Set the attention processor to use. + + Args: + processor (`AttnProcessor`): + The attention processor to use. + _remove_lora (`bool`, *optional*, defaults to `False`): + Set to `True` to remove LoRA layers from the model. + """ + if not USE_PEFT_BACKEND and hasattr(self, "processor") and _remove_lora and self.to_q.lora_layer is not None: + deprecate( + "set_processor to offload LoRA", + "0.26.0", + "In detail, removing LoRA layers via calling `set_default_attn_processor` is deprecated. Please make sure to call `pipe.unload_lora_weights()` instead.", + ) + # TODO(Patrick, Sayak) - this can be deprecated once PEFT LoRA integration is complete + # We need to remove all LoRA layers + # Don't forget to remove ALL `_remove_lora` from the codebase + for module in self.modules(): + if hasattr(module, "set_lora_layer"): + module.set_lora_layer(None) + + # if current processor is in `self._modules` and if passed `processor` is not, we need to + # pop `processor` from `self._modules` + if ( + hasattr(self, "processor") + and isinstance(self.processor, torch.nn.Module) + and not isinstance(processor, torch.nn.Module) + ): + logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}") + self._modules.pop("processor") + + self.processor = processor + + def get_processor(self, return_deprecated_lora: bool = False): + r""" + Get the attention processor in use. + + Args: + return_deprecated_lora (`bool`, *optional*, defaults to `False`): + Set to `True` to return the deprecated LoRA attention processor. + + Returns: + "AttentionProcessor": The attention processor in use. + """ + if not return_deprecated_lora: + return self.processor + + # TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible + # serialization format for LoRA Attention Processors. It should be deleted once the integration + # with PEFT is completed. + is_lora_activated = { + name: module.lora_layer is not None + for name, module in self.named_modules() + if hasattr(module, "lora_layer") + } + + # 1. if no layer has a LoRA activated we can return the processor as usual + if not any(is_lora_activated.values()): + return self.processor + + # If doesn't apply LoRA do `add_k_proj` or `add_v_proj` + is_lora_activated.pop("add_k_proj", None) + is_lora_activated.pop("add_v_proj", None) + # 2. else it is not posssible that only some layers have LoRA activated + if not all(is_lora_activated.values()): + raise ValueError( + f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}" + ) + + # 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor + non_lora_processor_cls_name = self.processor.__class__.__name__ + lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name) + + hidden_size = self.inner_dim + + # now create a LoRA attention processor from the LoRA layers + if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]: + kwargs = { + "cross_attention_dim": self.cross_attention_dim, + "rank": self.to_q.lora_layer.rank, + "network_alpha": self.to_q.lora_layer.network_alpha, + "q_rank": self.to_q.lora_layer.rank, + "q_hidden_size": self.to_q.lora_layer.out_features, + "k_rank": self.to_k.lora_layer.rank, + "k_hidden_size": self.to_k.lora_layer.out_features, + "v_rank": self.to_v.lora_layer.rank, + "v_hidden_size": self.to_v.lora_layer.out_features, + "out_rank": self.to_out[0].lora_layer.rank, + "out_hidden_size": self.to_out[0].lora_layer.out_features, + } + + if hasattr(self.processor, "attention_op"): + kwargs["attention_op"] = self.processor.attention_op + + lora_processor = lora_processor_cls(hidden_size, **kwargs) + lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) + lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) + lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) + lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) + elif lora_processor_cls == LoRAAttnAddedKVProcessor: + lora_processor = lora_processor_cls( + hidden_size, + cross_attention_dim=self.add_k_proj.weight.shape[0], + rank=self.to_q.lora_layer.rank, + network_alpha=self.to_q.lora_layer.network_alpha, + ) + lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) + lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) + lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) + lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) + + # only save if used + if self.add_k_proj.lora_layer is not None: + lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict()) + lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict()) + else: + lora_processor.add_k_proj_lora = None + lora_processor.add_v_proj_lora = None + else: + raise ValueError(f"{lora_processor_cls} does not exist.") + + return lora_processor + + def forward( + self, + hidden_states: torch.FloatTensor, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + **cross_attention_kwargs, + ) -> torch.Tensor: + r""" + The forward method of the `Attention` class. + + Args: + hidden_states (`torch.Tensor`): + The hidden states of the query. + encoder_hidden_states (`torch.Tensor`, *optional*): + The hidden states of the encoder. + attention_mask (`torch.Tensor`, *optional*): + The attention mask to use. If `None`, no mask is applied. + **cross_attention_kwargs: + Additional keyword arguments to pass along to the cross attention. + + Returns: + `torch.Tensor`: The output of the attention layer. + """ + # The `Attention` class can call different attention processors / attention functions + # here we simply pass along all tensors to the selected processor class + # For standard processors that are defined here, `**cross_attention_kwargs` is empty + return self.processor( + self, + hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + **cross_attention_kwargs, + ) + + def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor: + r""" + Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads` + is the number of heads initialized while constructing the `Attention` class. + + Args: + tensor (`torch.Tensor`): The tensor to reshape. + + Returns: + `torch.Tensor`: The reshaped tensor. + """ + head_size = self.heads + batch_size, seq_len, dim = tensor.shape + tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) + tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) + return tensor + + def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor: + r""" + Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is + the number of heads initialized while constructing the `Attention` class. + + Args: + tensor (`torch.Tensor`): The tensor to reshape. + out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is + reshaped to `[batch_size * heads, seq_len, dim // heads]`. + + Returns: + `torch.Tensor`: The reshaped tensor. + """ + head_size = self.heads + batch_size, seq_len, dim = tensor.shape + tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) + tensor = tensor.permute(0, 2, 1, 3) + + if out_dim == 3: + tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) + + return tensor + + def get_attention_scores( + self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None + ) -> torch.Tensor: + r""" + Compute the attention scores. + + Args: + query (`torch.Tensor`): The query tensor. + key (`torch.Tensor`): The key tensor. + attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. + + Returns: + `torch.Tensor`: The attention probabilities/scores. + """ + dtype = query.dtype + if self.upcast_attention: + query = query.float() + key = key.float() + + if attention_mask is None: + baddbmm_input = torch.empty( + query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device + ) + beta = 0 + else: + baddbmm_input = attention_mask + beta = 1 + + attention_scores = torch.baddbmm( + baddbmm_input, + query, + key.transpose(-1, -2), + beta=beta, + alpha=self.scale, + ) + del baddbmm_input + + if self.upcast_softmax: + attention_scores = attention_scores.float() + + attention_probs = attention_scores.softmax(dim=-1) + del attention_scores + + attention_probs = attention_probs.to(dtype) + + return attention_probs + + def prepare_attention_mask( + self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3, head_size = None, + ) -> torch.Tensor: + r""" + Prepare the attention mask for the attention computation. + + Args: + attention_mask (`torch.Tensor`): + The attention mask to prepare. + target_length (`int`): + The target length of the attention mask. This is the length of the attention mask after padding. + batch_size (`int`): + The batch size, which is used to repeat the attention mask. + out_dim (`int`, *optional*, defaults to `3`): + The output dimension of the attention mask. Can be either `3` or `4`. + + Returns: + `torch.Tensor`: The prepared attention mask. + """ + head_size = head_size if head_size is not None else self.heads + if attention_mask is None: + return attention_mask + + current_length: int = attention_mask.shape[-1] + if current_length != target_length: + if attention_mask.device.type == "mps": + # HACK: MPS: Does not support padding by greater than dimension of input tensor. + # Instead, we can manually construct the padding tensor. + padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length) + padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device) + attention_mask = torch.cat([attention_mask, padding], dim=2) + else: + # TODO: for pipelines such as stable-diffusion, padding cross-attn mask: + # we want to instead pad by (0, remaining_length), where remaining_length is: + # remaining_length: int = target_length - current_length + # TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding + attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) + + if out_dim == 3: + if attention_mask.shape[0] < batch_size * head_size: + attention_mask = attention_mask.repeat_interleave(head_size, dim=0) + elif out_dim == 4: + attention_mask = attention_mask.unsqueeze(1) + attention_mask = attention_mask.repeat_interleave(head_size, dim=1) + + return attention_mask + + def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: + r""" + Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the + `Attention` class. + + Args: + encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder. + + Returns: + `torch.Tensor`: The normalized encoder hidden states. + """ + assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states" + + if isinstance(self.norm_cross, nn.LayerNorm): + encoder_hidden_states = self.norm_cross(encoder_hidden_states) + elif isinstance(self.norm_cross, nn.GroupNorm): + # Group norm norms along the channels dimension and expects + # input to be in the shape of (N, C, *). In this case, we want + # to norm along the hidden dimension, so we need to move + # (batch_size, sequence_length, hidden_size) -> + # (batch_size, hidden_size, sequence_length) + encoder_hidden_states = encoder_hidden_states.transpose(1, 2) + encoder_hidden_states = self.norm_cross(encoder_hidden_states) + encoder_hidden_states = encoder_hidden_states.transpose(1, 2) + else: + assert False + + return encoder_hidden_states + + def _init_compress(self): + self.sr.bias.data.zero_() + self.norm = nn.LayerNorm(self.inner_dim) + + +class AttnProcessor2_0(nn.Module): + r""" + Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). + """ + + def __init__(self, attention_mode="xformers", use_rope=False, interpolation_scale_thw=None): + super().__init__() + self.attention_mode = attention_mode + self.use_rope = use_rope + self.interpolation_scale_thw = interpolation_scale_thw + + if self.use_rope: + self._init_rope(interpolation_scale_thw) + + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") + + def _init_rope(self, interpolation_scale_thw): + self.rope = RoPE3D(interpolation_scale_thw=interpolation_scale_thw) + self.position_getter = PositionGetter3D() + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + temb: Optional[torch.FloatTensor] = None, + frame: int = 8, + height: int = 16, + width: int = 16, + ) -> torch.FloatTensor: + + residual = hidden_states + + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None and self.attention_mode == 'xformers': + attention_heads = attn.heads + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, head_size=attention_heads) + attention_mask = attention_mask.view(batch_size, attention_heads, -1, attention_mask.shape[-1]) + else: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + + + attn_heads = attn.heads + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn_heads + + query = query.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2) + + + if self.use_rope: + # require the shape of (batch_size x nheads x ntokens x dim) + pos_thw = self.position_getter(batch_size, t=frame, h=height, w=width, device=query.device) + query = self.rope(query, pos_thw) + key = self.rope(key, pos_thw) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + if self.attention_mode == 'flash': + # assert attention_mask is None, 'flash-attn do not support attention_mask' + with sdpa_kernel(SDPBackend.FLASH_ATTENTION): + hidden_states = F.scaled_dot_product_attention( + query, key, value, dropout_p=0.0, is_causal=False + ) + elif self.attention_mode == 'xformers': + with sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION): + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn_heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + +class FeedForward(nn.Module): + r""" + A feed-forward layer. + + Parameters: + dim (`int`): The number of channels in the input. + dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. + mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. + dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. + activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. + final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. + """ + + def __init__( + self, + dim: int, + dim_out: Optional[int] = None, + mult: int = 4, + dropout: float = 0.0, + activation_fn: str = "geglu", + final_dropout: bool = False, + ): + super().__init__() + inner_dim = int(dim * mult) + dim_out = dim_out if dim_out is not None else dim + linear_cls = nn.Linear + + if activation_fn == "gelu": + act_fn = GELU(dim, inner_dim) + if activation_fn == "gelu-approximate": + act_fn = GELU(dim, inner_dim, approximate="tanh") + elif activation_fn == "geglu": + act_fn = GEGLU(dim, inner_dim) + elif activation_fn == "geglu-approximate": + act_fn = ApproximateGELU(dim, inner_dim) + + self.net = nn.ModuleList([]) + # project in + self.net.append(act_fn) + # project dropout + self.net.append(nn.Dropout(dropout)) + # project out + self.net.append(linear_cls(inner_dim, dim_out)) + # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout + if final_dropout: + self.net.append(nn.Dropout(dropout)) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + for module in self.net: + hidden_states = module(hidden_states) + return hidden_states + + +@maybe_allow_in_graph +class BasicTransformerBlock(nn.Module): + r""" + A basic Transformer block. + + Parameters: + dim (`int`): The number of channels in the input and output. + num_attention_heads (`int`): The number of heads to use for multi-head attention. + attention_head_dim (`int`): The number of channels in each head. + dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. + cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. + activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. + num_embeds_ada_norm (: + obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. + attention_bias (: + obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. + only_cross_attention (`bool`, *optional*): + Whether to use only cross-attention layers. In this case two cross attention layers are used. + double_self_attention (`bool`, *optional*): + Whether to use two self-attention layers. In this case no cross attention layers are used. + upcast_attention (`bool`, *optional*): + Whether to upcast the attention computation to float32. This is useful for mixed precision training. + norm_elementwise_affine (`bool`, *optional*, defaults to `True`): + Whether to use learnable elementwise affine parameters for normalization. + norm_type (`str`, *optional*, defaults to `"layer_norm"`): + The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. + final_dropout (`bool` *optional*, defaults to False): + Whether to apply a final dropout after the last feed-forward layer. + positional_embeddings (`str`, *optional*, defaults to `None`): + The type of positional embeddings to apply to. + num_positional_embeddings (`int`, *optional*, defaults to `None`): + The maximum number of positional embeddings to apply. + """ + + def __init__( + self, + dim: int, + num_attention_heads: int, + attention_head_dim: int, + dropout=0.0, + cross_attention_dim: Optional[int] = None, + activation_fn: str = "geglu", + num_embeds_ada_norm: Optional[int] = None, + attention_bias: bool = False, + only_cross_attention: bool = False, + double_self_attention: bool = False, + upcast_attention: bool = False, + norm_elementwise_affine: bool = True, + norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single' + norm_eps: float = 1e-5, + final_dropout: bool = False, + positional_embeddings: Optional[str] = None, + num_positional_embeddings: Optional[int] = None, + sa_attention_mode: str = "flash", + ca_attention_mode: str = "xformers", + use_rope: bool = False, + interpolation_scale_thw: Tuple[int] = (1, 1, 1), + block_idx: Optional[int] = None, + ): + super().__init__() + self.only_cross_attention = only_cross_attention + + self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" + self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" + self.use_ada_layer_norm_single = norm_type == "ada_norm_single" + self.use_layer_norm = norm_type == "layer_norm" + + if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: + raise ValueError( + f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" + f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." + ) + + if positional_embeddings and (num_positional_embeddings is None): + raise ValueError( + "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." + ) + + if positional_embeddings == "sinusoidal": + self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) + else: + self.pos_embed = None + + # Define 3 blocks. Each block has its own normalization layer. + # 1. Self-Attn + if self.use_ada_layer_norm: + self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) + elif self.use_ada_layer_norm_zero: + self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) + else: + self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) + + self.attn1 = Attention( + query_dim=dim, + heads=num_attention_heads, + dim_head=attention_head_dim, + dropout=dropout, + bias=attention_bias, + cross_attention_dim=cross_attention_dim if only_cross_attention else None, + upcast_attention=upcast_attention, + attention_mode=sa_attention_mode, + use_rope=use_rope, + interpolation_scale_thw=interpolation_scale_thw, + ) + + # 2. Cross-Attn + if cross_attention_dim is not None or double_self_attention: + # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. + # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during + # the second cross attention block. + self.norm2 = ( + AdaLayerNorm(dim, num_embeds_ada_norm) + if self.use_ada_layer_norm + else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) + ) + self.attn2 = Attention( + query_dim=dim, + cross_attention_dim=cross_attention_dim if not double_self_attention else None, + heads=num_attention_heads, + dim_head=attention_head_dim, + dropout=dropout, + bias=attention_bias, + upcast_attention=upcast_attention, + attention_mode=ca_attention_mode, # only xformers support attention_mask + use_rope=False, # do not position in cross attention + interpolation_scale_thw=interpolation_scale_thw, + ) # is self-attn if encoder_hidden_states is none + else: + self.norm2 = None + self.attn2 = None + + # 3. Feed-forward + + if not self.use_ada_layer_norm_single: + self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) + + self.ff = FeedForward( + dim, + dropout=dropout, + activation_fn=activation_fn, + final_dropout=final_dropout, + ) + + # 5. Scale-shift for PixArt-Alpha. + if self.use_ada_layer_norm_single: + self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) + + + def forward( + self, + hidden_states: torch.FloatTensor, + attention_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + timestep: Optional[torch.LongTensor] = None, + cross_attention_kwargs: Dict[str, Any] = None, + class_labels: Optional[torch.LongTensor] = None, + frame: int = None, + height: int = None, + width: int = None, + ) -> torch.FloatTensor: + # Notice that normalization is always applied before the real computation in the following blocks. + cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} + + # 0. Self-Attention + batch_size = hidden_states.shape[0] + + if self.use_ada_layer_norm: + norm_hidden_states = self.norm1(hidden_states, timestep) + elif self.use_ada_layer_norm_zero: + norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( + hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype + ) + elif self.use_layer_norm: + norm_hidden_states = self.norm1(hidden_states) + elif self.use_ada_layer_norm_single: + shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( + self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) + ).chunk(6, dim=1) + norm_hidden_states = self.norm1(hidden_states) + norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa + norm_hidden_states = norm_hidden_states.squeeze(1) + else: + raise ValueError("Incorrect norm used") + + if self.pos_embed is not None: + norm_hidden_states = self.pos_embed(norm_hidden_states) + + attn_output = self.attn1( + norm_hidden_states, + encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, + attention_mask=attention_mask, + frame=frame, + height=height, + width=width, + **cross_attention_kwargs, + ) + if self.use_ada_layer_norm_zero: + attn_output = gate_msa.unsqueeze(1) * attn_output + elif self.use_ada_layer_norm_single: + attn_output = gate_msa * attn_output + + hidden_states = attn_output + hidden_states + if hidden_states.ndim == 4: + hidden_states = hidden_states.squeeze(1) + + # 1. Cross-Attention + if self.attn2 is not None: + + if self.use_ada_layer_norm: + norm_hidden_states = self.norm2(hidden_states, timestep) + elif self.use_ada_layer_norm_zero or self.use_layer_norm: + norm_hidden_states = self.norm2(hidden_states) + elif self.use_ada_layer_norm_single: + # For PixArt norm2 isn't applied here: + # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 + norm_hidden_states = hidden_states + else: + raise ValueError("Incorrect norm") + + if self.pos_embed is not None and self.use_ada_layer_norm_single is False: + norm_hidden_states = self.pos_embed(norm_hidden_states) + + attn_output = self.attn2( + norm_hidden_states, + encoder_hidden_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + **cross_attention_kwargs, + ) + hidden_states = attn_output + hidden_states + + + # 2. Feed-forward + if not self.use_ada_layer_norm_single: + norm_hidden_states = self.norm3(hidden_states) + + if self.use_ada_layer_norm_zero: + norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] + + if self.use_ada_layer_norm_single: + norm_hidden_states = self.norm2(hidden_states) + norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp + + ff_output = self.ff(norm_hidden_states) + + if self.use_ada_layer_norm_zero: + ff_output = gate_mlp.unsqueeze(1) * ff_output + elif self.use_ada_layer_norm_single: + ff_output = gate_mlp * ff_output + + + hidden_states = ff_output + hidden_states + if hidden_states.ndim == 4: + hidden_states = hidden_states.squeeze(1) + + return hidden_states + + +class AdaLayerNormSingle(nn.Module): + r""" + Norm layer adaptive layer norm single (adaLN-single). + + As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3). + + Parameters: + embedding_dim (`int`): The size of each embedding vector. + use_additional_conditions (`bool`): To use additional conditions for normalization or not. + """ + + def __init__(self, embedding_dim: int, use_additional_conditions: bool = False): + super().__init__() + + self.emb = CombinedTimestepSizeEmbeddings( + embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions + ) + + self.silu = nn.SiLU() + self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) + + def forward( + self, + timestep: torch.Tensor, + added_cond_kwargs: Dict[str, torch.Tensor] = None, + batch_size: int = None, + hidden_dtype: Optional[torch.dtype] = None, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: + # No modulation happening here. + embedded_timestep = self.emb( + timestep, batch_size=batch_size, hidden_dtype=hidden_dtype, resolution=None, aspect_ratio=None + ) + return self.linear(self.silu(embedded_timestep)), embedded_timestep + + +@dataclass +class Transformer3DModelOutput(BaseOutput): + """ + The output of [`Transformer2DModel`]. + + Args: + sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): + The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability + distributions for the unnoised latent pixels. + """ + + sample: torch.FloatTensor + + +class AllegroTransformer3DModel(ModelMixin, ConfigMixin): + _supports_gradient_checkpointing = True + + """ + A 2D Transformer model for image-like data. + + Parameters: + num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. + attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. + in_channels (`int`, *optional*): + The number of channels in the input and output (specify if the input is **continuous**). + num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. + dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. + cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. + sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). + This is fixed during training since it is used to learn a number of position embeddings. + num_vector_embeds (`int`, *optional*): + The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**). + Includes the class for the masked latent pixel. + activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. + num_embeds_ada_norm ( `int`, *optional*): + The number of diffusion steps used during training. Pass if at least one of the norm_layers is + `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are + added to the hidden states. + + During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. + attention_bias (`bool`, *optional*): + Configure if the `TransformerBlocks` attention should contain a bias parameter. + """ + + @register_to_config + def __init__( + self, + num_attention_heads: int = 16, + attention_head_dim: int = 88, + in_channels: Optional[int] = None, + out_channels: Optional[int] = None, + num_layers: int = 1, + dropout: float = 0.0, + cross_attention_dim: Optional[int] = None, + attention_bias: bool = False, + sample_size: Optional[int] = None, + sample_size_t: Optional[int] = None, + patch_size: Optional[int] = None, + patch_size_t: Optional[int] = None, + activation_fn: str = "geglu", + num_embeds_ada_norm: Optional[int] = None, + use_linear_projection: bool = False, + only_cross_attention: bool = False, + double_self_attention: bool = False, + upcast_attention: bool = False, + norm_type: str = "ada_norm", + norm_elementwise_affine: bool = True, + norm_eps: float = 1e-5, + caption_channels: int = None, + interpolation_scale_h: float = None, + interpolation_scale_w: float = None, + interpolation_scale_t: float = None, + use_additional_conditions: Optional[bool] = None, + sa_attention_mode: str = "flash", + ca_attention_mode: str = 'xformers', + downsampler: str = None, + use_rope: bool = False, + model_max_length: int = 300, + ): + super().__init__() + self.use_linear_projection = use_linear_projection + self.interpolation_scale_t = interpolation_scale_t + self.interpolation_scale_h = interpolation_scale_h + self.interpolation_scale_w = interpolation_scale_w + self.downsampler = downsampler + self.caption_channels = caption_channels + self.num_attention_heads = num_attention_heads + self.attention_head_dim = attention_head_dim + inner_dim = num_attention_heads * attention_head_dim + self.inner_dim = inner_dim + self.in_channels = in_channels + self.out_channels = in_channels if out_channels is None else out_channels + self.use_rope = use_rope + self.model_max_length = model_max_length + self.num_layers = num_layers + self.config.hidden_size = inner_dim + + + # 1. Transformer3DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)` + # Define whether input is continuous or discrete depending on configuration + assert in_channels is not None and patch_size is not None + + # 2. Initialize the right blocks. + # Initialize the output blocks and other projection blocks when necessary. + + assert self.config.sample_size_t is not None, "AllegroTransformer3DModel over patched input must provide sample_size_t" + assert self.config.sample_size is not None, "AllegroTransformer3DModel over patched input must provide sample_size" + #assert not (self.config.sample_size_t == 1 and self.config.patch_size_t == 2), "Image do not need patchfy in t-dim" + + self.num_frames = self.config.sample_size_t + self.config.sample_size = to_2tuple(self.config.sample_size) + self.height = self.config.sample_size[0] + self.width = self.config.sample_size[1] + self.patch_size_t = self.config.patch_size_t + self.patch_size = self.config.patch_size + interpolation_scale_t = ((self.config.sample_size_t - 1) // 16 + 1) if self.config.sample_size_t % 2 == 1 else self.config.sample_size_t / 16 + interpolation_scale_t = ( + self.config.interpolation_scale_t if self.config.interpolation_scale_t is not None else interpolation_scale_t + ) + interpolation_scale = ( + self.config.interpolation_scale_h if self.config.interpolation_scale_h is not None else self.config.sample_size[0] / 30, + self.config.interpolation_scale_w if self.config.interpolation_scale_w is not None else self.config.sample_size[1] / 40, + ) + self.pos_embed = PatchEmbed2D( + num_frames=self.config.sample_size_t, + height=self.config.sample_size[0], + width=self.config.sample_size[1], + patch_size_t=self.config.patch_size_t, + patch_size=self.config.patch_size, + in_channels=self.in_channels, + embed_dim=self.inner_dim, + interpolation_scale=interpolation_scale, + interpolation_scale_t=interpolation_scale_t, + use_abs_pos=not self.config.use_rope, + ) + interpolation_scale_thw = (interpolation_scale_t, *interpolation_scale) + + # 3. Define transformers blocks, spatial attention + self.transformer_blocks = nn.ModuleList( + [ + BasicTransformerBlock( + inner_dim, + num_attention_heads, + attention_head_dim, + dropout=dropout, + cross_attention_dim=cross_attention_dim, + activation_fn=activation_fn, + num_embeds_ada_norm=num_embeds_ada_norm, + attention_bias=attention_bias, + only_cross_attention=only_cross_attention, + double_self_attention=double_self_attention, + upcast_attention=upcast_attention, + norm_type=norm_type, + norm_elementwise_affine=norm_elementwise_affine, + norm_eps=norm_eps, + sa_attention_mode=sa_attention_mode, + ca_attention_mode=ca_attention_mode, + use_rope=use_rope, + interpolation_scale_thw=interpolation_scale_thw, + block_idx=d, + ) + for d in range(num_layers) + ] + ) + + # 4. Define output layers + + if norm_type != "ada_norm_single": + self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) + self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim) + self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) + elif norm_type == "ada_norm_single": + self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) + self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) + self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) + + # 5. PixArt-Alpha blocks. + self.adaln_single = None + self.use_additional_conditions = False + if norm_type == "ada_norm_single": + # self.use_additional_conditions = self.config.sample_size[0] == 128 # False, 128 -> 1024 + # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use + # additional conditions until we find better name + self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions) + + self.caption_projection = None + if caption_channels is not None: + self.caption_projection = PixArtAlphaTextProjection( + in_features=caption_channels, hidden_size=inner_dim + ) + + self.gradient_checkpointing = False + + def _set_gradient_checkpointing(self, module, value=False): + self.gradient_checkpointing = value + + + def forward( + self, + hidden_states: torch.Tensor, + timestep: Optional[torch.LongTensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + added_cond_kwargs: Dict[str, torch.Tensor] = None, + class_labels: Optional[torch.LongTensor] = None, + cross_attention_kwargs: Dict[str, Any] = None, + attention_mask: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + return_dict: bool = True, + ): + """ + The [`Transformer2DModel`] forward method. + + Args: + hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, frame, channel, height, width)` if continuous): + Input `hidden_states`. + encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): + Conditional embeddings for cross attention layer. If not given, cross-attention defaults to + self-attention. + timestep ( `torch.LongTensor`, *optional*): + Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. + class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): + Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in + `AdaLayerZeroNorm`. + added_cond_kwargs ( `Dict[str, Any]`, *optional*): + A kwargs dictionary that if specified is passed along to the `AdaLayerNormSingle` + cross_attention_kwargs ( `Dict[str, Any]`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + attention_mask ( `torch.Tensor`, *optional*): + An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask + is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large + negative values to the attention scores corresponding to "discard" tokens. + encoder_attention_mask ( `torch.Tensor`, *optional*): + Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: + + * Mask `(batch, sequence_length)` True = keep, False = discard. + * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. + + If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format + above. This bias will be added to the cross-attention scores. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain + tuple. + + Returns: + If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a + `tuple` where the first element is the sample tensor. + """ + batch_size, c, frame, h, w = hidden_states.shape + + # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. + # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. + # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. + # expects mask of shape: + # [batch, key_tokens] + # adds singleton query_tokens dimension: + # [batch, 1, key_tokens] + # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: + # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) + # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) attention_mask_vid, attention_mask_img = None, None + if attention_mask is not None and attention_mask.ndim == 4: + # assume that mask is expressed as: + # (1 = keep, 0 = discard) + # convert mask into a bias that can be added to attention scores: + # (keep = +0, discard = -10000.0) + # b, frame+use_image_num, h, w -> a video with images + # b, 1, h, w -> only images + attention_mask = attention_mask.to(self.dtype) + attention_mask_vid = attention_mask[:, :frame] # b, frame, h, w + + if attention_mask_vid.numel() > 0: + attention_mask_vid = attention_mask_vid.unsqueeze(1) # b 1 t h w + attention_mask_vid = F.max_pool3d(attention_mask_vid, kernel_size=(self.patch_size_t, self.patch_size, self.patch_size), + stride=(self.patch_size_t, self.patch_size, self.patch_size)) + attention_mask_vid = rearrange(attention_mask_vid, 'b 1 t h w -> (b 1) 1 (t h w)') + + attention_mask_vid = (1 - attention_mask_vid.bool().to(self.dtype)) * -10000.0 if attention_mask_vid.numel() > 0 else None + + # convert encoder_attention_mask to a bias the same way we do for attention_mask + if encoder_attention_mask is not None and encoder_attention_mask.ndim == 3: + # b, 1+use_image_num, l -> a video with images + # b, 1, l -> only images + encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0 + encoder_attention_mask_vid = rearrange(encoder_attention_mask, 'b 1 l -> (b 1) 1 l') if encoder_attention_mask.numel() > 0 else None + + # 1. Input + frame = frame // self.patch_size_t # patchfy + # print('frame', frame) + height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size + + added_cond_kwargs = {"resolution": None, "aspect_ratio": None} if added_cond_kwargs is None else added_cond_kwargs + hidden_states, encoder_hidden_states_vid, \ + timestep_vid, embedded_timestep_vid = self._operate_on_patched_inputs( + hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size, + ) + + + for _, block in enumerate(self.transformer_blocks): + hidden_states = block( + hidden_states, + attention_mask_vid, + encoder_hidden_states_vid, + encoder_attention_mask_vid, + timestep_vid, + cross_attention_kwargs, + class_labels, + frame=frame, + height=height, + width=width, + ) + + # 3. Output + output = None + if hidden_states is not None: + output = self._get_output_for_patched_inputs( + hidden_states=hidden_states, + timestep=timestep_vid, + class_labels=class_labels, + embedded_timestep=embedded_timestep_vid, + num_frames=frame, + height=height, + width=width, + ) # b c t h w + + if not return_dict: + return (output,) + + return Transformer3DModelOutput(sample=output) + + def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size): + # batch_size = hidden_states.shape[0] + hidden_states_vid = self.pos_embed(hidden_states.to(self.dtype)) + timestep_vid = None + embedded_timestep_vid = None + encoder_hidden_states_vid = None + + if self.adaln_single is not None: + if self.use_additional_conditions and added_cond_kwargs is None: + raise ValueError( + "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`." + ) + timestep, embedded_timestep = self.adaln_single( + timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=self.dtype + ) # b 6d, b d + + timestep_vid = timestep + embedded_timestep_vid = embedded_timestep + + if self.caption_projection is not None: + encoder_hidden_states = self.caption_projection(encoder_hidden_states) # b, 1+use_image_num, l, d or b, 1, l, d + encoder_hidden_states_vid = rearrange(encoder_hidden_states[:, :1], 'b 1 l d -> (b 1) l d') + + return hidden_states_vid, encoder_hidden_states_vid, timestep_vid, embedded_timestep_vid + + def _get_output_for_patched_inputs( + self, hidden_states, timestep, class_labels, embedded_timestep, num_frames, height=None, width=None + ): + # import ipdb;ipdb.set_trace() + if self.config.norm_type != "ada_norm_single": + conditioning = self.transformer_blocks[0].norm1.emb( + timestep, class_labels, hidden_dtype=self.dtype + ) + shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) + hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] + hidden_states = self.proj_out_2(hidden_states) + elif self.config.norm_type == "ada_norm_single": + shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) + hidden_states = self.norm_out(hidden_states) + # Modulation + hidden_states = hidden_states * (1 + scale) + shift + hidden_states = self.proj_out(hidden_states) + hidden_states = hidden_states.squeeze(1) + + # unpatchify + if self.adaln_single is None: + height = width = int(hidden_states.shape[1] ** 0.5) + hidden_states = hidden_states.reshape( + shape=(-1, num_frames, height, width, self.patch_size_t, self.patch_size, self.patch_size, self.out_channels) + ) + hidden_states = torch.einsum("nthwopqc->nctohpwq", hidden_states) + output = hidden_states.reshape( + shape=(-1, self.out_channels, num_frames * self.patch_size_t, height * self.patch_size, width * self.patch_size) + ) + return output diff --git a/vae/config.json b/vae/config.json new file mode 100644 index 0000000..c6db446 --- /dev/null +++ b/vae/config.json @@ -0,0 +1,41 @@ +{ + "_class_name": "AllegroAutoencoderKL3D", + "_diffusers_version": "0.28.0", + "_name_or_path": "/cpfs/data/user/larrytsai/Projects/Yi-VG/allegro_pipeline/vae", + "act_fn": "silu", + "block_out_channels": [ + 128, + 256, + 512, + 512 + ], + "blocks_tempdown_li": [ + true, + true, + false, + false + ], + "blocks_tempup_li": [ + false, + true, + true, + false + ], + "chunk_len": 24, + "down_block_num": 4, + "force_upcast": true, + "in_channels": 3, + "latent_channels": 4, + "layers_per_block": 2, + "load_mode": "full", + "norm_num_groups": 32, + "out_channels": 3, + "sample_size": 320, + "scale_factor": 0.13, + "t_over": 8, + "tile_overlap": [ + 120, + 80 + ], + "up_block_num": 4 +} diff --git a/vae/diffusion_pytorch_model.safetensors b/vae/diffusion_pytorch_model.safetensors new file mode 100644 index 0000000..20b635e --- /dev/null +++ b/vae/diffusion_pytorch_model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:47871a698b18f92f15019d361a81cbc8af4676f8eef9a47fd2b95354a39f831a +size 699904972 diff --git a/vae/vae_allegro.py b/vae/vae_allegro.py new file mode 100644 index 0000000..a70baa7 --- /dev/null +++ b/vae/vae_allegro.py @@ -0,0 +1,978 @@ +import math +from dataclasses import dataclass +import os +from typing import Dict, Optional, Tuple, Union +from einops import rearrange + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.models.modeling_utils import ModelMixin +from diffusers.models.modeling_outputs import AutoencoderKLOutput +from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL +from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution +from diffusers.models.attention_processor import Attention +from diffusers.models.resnet import ResnetBlock2D +from diffusers.models.upsampling import Upsample2D +from diffusers.models.downsampling import Downsample2D +from diffusers.models.attention_processor import SpatialNorm + + +class TemporalConvBlock(nn.Module): + """ + Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from: + https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016 + """ + + def __init__(self, in_dim, out_dim=None, dropout=0.0, up_sample=False, down_sample=False, spa_stride=1): + super().__init__() + out_dim = out_dim or in_dim + self.in_dim = in_dim + self.out_dim = out_dim + spa_pad = int((spa_stride-1)*0.5) + temp_pad = 0 + self.temp_pad = temp_pad + + if down_sample: + self.conv1 = nn.Sequential( + nn.GroupNorm(32, in_dim), + nn.SiLU(), + nn.Conv3d(in_dim, out_dim, (2, spa_stride, spa_stride), stride=(2,1,1), padding=(0, spa_pad, spa_pad)) + ) + elif up_sample: + self.conv1 = nn.Sequential( + nn.GroupNorm(32, in_dim), + nn.SiLU(), + nn.Conv3d(in_dim, out_dim*2, (1, spa_stride, spa_stride), padding=(0, spa_pad, spa_pad)) + ) + else: + self.conv1 = nn.Sequential( + nn.GroupNorm(32, in_dim), + nn.SiLU(), + nn.Conv3d(in_dim, out_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad)) + ) + self.conv2 = nn.Sequential( + nn.GroupNorm(32, out_dim), + nn.SiLU(), + nn.Dropout(dropout), + nn.Conv3d(out_dim, in_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad)), + ) + self.conv3 = nn.Sequential( + nn.GroupNorm(32, out_dim), + nn.SiLU(), + nn.Dropout(dropout), + nn.Conv3d(out_dim, in_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad)), + ) + self.conv4 = nn.Sequential( + nn.GroupNorm(32, out_dim), + nn.SiLU(), + nn.Conv3d(out_dim, in_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad)), + ) + + # zero out the last layer params,so the conv block is identity + nn.init.zeros_(self.conv4[-1].weight) + nn.init.zeros_(self.conv4[-1].bias) + + self.down_sample = down_sample + self.up_sample = up_sample + + + def forward(self, hidden_states): + identity = hidden_states + + if self.down_sample: + identity = identity[:,:,::2] + elif self.up_sample: + hidden_states_new = torch.cat((hidden_states,hidden_states),dim=2) + hidden_states_new[:, :, 0::2] = hidden_states + hidden_states_new[:, :, 1::2] = hidden_states + identity = hidden_states_new + del hidden_states_new + + if self.down_sample or self.up_sample: + hidden_states = self.conv1(hidden_states) + else: + hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2) + hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2) + hidden_states = self.conv1(hidden_states) + + + if self.up_sample: + hidden_states = rearrange(hidden_states, 'b (d c) f h w -> b c (f d) h w', d=2) + + hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2) + hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2) + hidden_states = self.conv2(hidden_states) + hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2) + hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2) + hidden_states = self.conv3(hidden_states) + hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2) + hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2) + hidden_states = self.conv4(hidden_states) + + hidden_states = identity + hidden_states + + return hidden_states + + +class DownEncoderBlock3D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor=1.0, + add_downsample=True, + add_temp_downsample=False, + downsample_padding=1, + ): + super().__init__() + resnets = [] + temp_convs = [] + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=out_channels, + temb_channels=None, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + temp_convs.append( + TemporalConvBlock( + out_channels, + out_channels, + dropout=0.1, + ) + ) + + self.resnets = nn.ModuleList(resnets) + self.temp_convs = nn.ModuleList(temp_convs) + + if add_temp_downsample: + self.temp_convs_down = TemporalConvBlock( + out_channels, + out_channels, + dropout=0.1, + down_sample=True, + spa_stride=3 + ) + self.add_temp_downsample = add_temp_downsample + + if add_downsample: + self.downsamplers = nn.ModuleList( + [ + Downsample2D( + out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" + ) + ] + ) + else: + self.downsamplers = None + + def _set_partial_grad(self): + for temp_conv in self.temp_convs: + temp_conv.requires_grad_(True) + if self.downsamplers: + for down_layer in self.downsamplers: + down_layer.requires_grad_(True) + + def forward(self, hidden_states): + bz = hidden_states.shape[0] + + for resnet, temp_conv in zip(self.resnets, self.temp_convs): + hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w') + hidden_states = resnet(hidden_states, temb=None) + hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz) + hidden_states = temp_conv(hidden_states) + if self.add_temp_downsample: + hidden_states = self.temp_convs_down(hidden_states) + + if self.downsamplers is not None: + hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w') + for upsampler in self.downsamplers: + hidden_states = upsampler(hidden_states) + hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz) + return hidden_states + + +class UpDecoderBlock3D(nn.Module): + def __init__( + self, + in_channels: int, + out_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", # default, spatial + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + output_scale_factor=1.0, + add_upsample=True, + add_temp_upsample=False, + temb_channels=None, + ): + super().__init__() + self.add_upsample = add_upsample + + resnets = [] + temp_convs = [] + + for i in range(num_layers): + input_channels = in_channels if i == 0 else out_channels + + resnets.append( + ResnetBlock2D( + in_channels=input_channels, + out_channels=out_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + temp_convs.append( + TemporalConvBlock( + out_channels, + out_channels, + dropout=0.1, + ) + ) + + self.resnets = nn.ModuleList(resnets) + self.temp_convs = nn.ModuleList(temp_convs) + + self.add_temp_upsample = add_temp_upsample + if add_temp_upsample: + self.temp_conv_up = TemporalConvBlock( + out_channels, + out_channels, + dropout=0.1, + up_sample=True, + spa_stride=3 + ) + + + if self.add_upsample: + # self.upsamplers = nn.ModuleList([PSUpsample2D(out_channels, use_conv=True, use_pixel_shuffle=True, out_channels=out_channels)]) + self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) + else: + self.upsamplers = None + + def _set_partial_grad(self): + for temp_conv in self.temp_convs: + temp_conv.requires_grad_(True) + if self.add_upsample: + self.upsamplers.requires_grad_(True) + + def forward(self, hidden_states): + bz = hidden_states.shape[0] + + for resnet, temp_conv in zip(self.resnets, self.temp_convs): + hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w') + hidden_states = resnet(hidden_states, temb=None) + hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz) + hidden_states = temp_conv(hidden_states) + if self.add_temp_upsample: + hidden_states = self.temp_conv_up(hidden_states) + + if self.upsamplers is not None: + hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w') + for upsampler in self.upsamplers: + hidden_states = upsampler(hidden_states) + hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz) + return hidden_states + + +class UNetMidBlock3DConv(nn.Module): + def __init__( + self, + in_channels: int, + temb_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_time_scale_shift: str = "default", # default, spatial + resnet_act_fn: str = "swish", + resnet_groups: int = 32, + resnet_pre_norm: bool = True, + add_attention: bool = True, + attention_head_dim=1, + output_scale_factor=1.0, + ): + super().__init__() + resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + self.add_attention = add_attention + + # there is always at least one resnet + resnets = [ + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ] + temp_convs = [ + TemporalConvBlock( + in_channels, + in_channels, + dropout=0.1, + ) + ] + attentions = [] + + if attention_head_dim is None: + attention_head_dim = in_channels + + for _ in range(num_layers): + if self.add_attention: + attentions.append( + Attention( + in_channels, + heads=in_channels // attention_head_dim, + dim_head=attention_head_dim, + rescale_output_factor=output_scale_factor, + eps=resnet_eps, + norm_num_groups=resnet_groups if resnet_time_scale_shift == "default" else None, + spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, + residual_connection=True, + bias=True, + upcast_softmax=True, + _from_deprecated_attn_block=True, + ) + ) + else: + attentions.append(None) + + resnets.append( + ResnetBlock2D( + in_channels=in_channels, + out_channels=in_channels, + temb_channels=temb_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + time_embedding_norm=resnet_time_scale_shift, + non_linearity=resnet_act_fn, + output_scale_factor=output_scale_factor, + pre_norm=resnet_pre_norm, + ) + ) + + temp_convs.append( + TemporalConvBlock( + in_channels, + in_channels, + dropout=0.1, + ) + ) + + self.resnets = nn.ModuleList(resnets) + self.temp_convs = nn.ModuleList(temp_convs) + self.attentions = nn.ModuleList(attentions) + + def _set_partial_grad(self): + for temp_conv in self.temp_convs: + temp_conv.requires_grad_(True) + + def forward( + self, + hidden_states, + ): + bz = hidden_states.shape[0] + hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w') + + hidden_states = self.resnets[0](hidden_states, temb=None) + hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz) + hidden_states = self.temp_convs[0](hidden_states) + hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w') + + for attn, resnet, temp_conv in zip( + self.attentions, self.resnets[1:], self.temp_convs[1:] + ): + hidden_states = attn(hidden_states) + hidden_states = resnet(hidden_states, temb=None) + hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz) + hidden_states = temp_conv(hidden_states) + return hidden_states + + +class Encoder3D(nn.Module): + def __init__( + self, + in_channels=3, + out_channels=3, + num_blocks=4, + blocks_temp_li=[False, False, False, False], + block_out_channels=(64,), + layers_per_block=2, + norm_num_groups=32, + act_fn="silu", + double_z=True, + ): + super().__init__() + self.layers_per_block = layers_per_block + self.blocks_temp_li = blocks_temp_li + + self.conv_in = nn.Conv2d( + in_channels, + block_out_channels[0], + kernel_size=3, + stride=1, + padding=1, + ) + + self.temp_conv_in = nn.Conv3d( + block_out_channels[0], + block_out_channels[0], + (3,1,1), + padding = (1, 0, 0) + ) + + self.mid_block = None + self.down_blocks = nn.ModuleList([]) + + # down + output_channel = block_out_channels[0] + for i in range(num_blocks): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + + down_block = DownEncoderBlock3D( + num_layers=self.layers_per_block, + in_channels=input_channel, + out_channels=output_channel, + add_downsample=not is_final_block, + add_temp_downsample=blocks_temp_li[i], + resnet_eps=1e-6, + downsample_padding=0, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + ) + self.down_blocks.append(down_block) + + # mid + self.mid_block = UNetMidBlock3DConv( + in_channels=block_out_channels[-1], + resnet_eps=1e-6, + resnet_act_fn=act_fn, + output_scale_factor=1, + resnet_time_scale_shift="default", + attention_head_dim=block_out_channels[-1], + resnet_groups=norm_num_groups, + temb_channels=None, + ) + + # out + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) + self.conv_act = nn.SiLU() + + conv_out_channels = 2 * out_channels if double_z else out_channels + + self.temp_conv_out = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3,1,1), padding = (1, 0, 0)) + + self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1) + + nn.init.zeros_(self.temp_conv_in.weight) + nn.init.zeros_(self.temp_conv_in.bias) + nn.init.zeros_(self.temp_conv_out.weight) + nn.init.zeros_(self.temp_conv_out.bias) + + self.gradient_checkpointing = False + + def forward(self, x): + ''' + x: [b, c, (tb f), h, w] + ''' + bz = x.shape[0] + sample = rearrange(x, 'b c n h w -> (b n) c h w') + sample = self.conv_in(sample) + + sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz) + temp_sample = sample + sample = self.temp_conv_in(sample) + sample = sample+temp_sample + # down + for b_id, down_block in enumerate(self.down_blocks): + sample = down_block(sample) + # middle + sample = self.mid_block(sample) + + # post-process + sample = rearrange(sample, 'b c n h w -> (b n) c h w') + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz) + + temp_sample = sample + sample = self.temp_conv_out(sample) + sample = sample+temp_sample + sample = rearrange(sample, 'b c n h w -> (b n) c h w') + + sample = self.conv_out(sample) + sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz) + return sample + +class Decoder3D(nn.Module): + def __init__( + self, + in_channels=4, + out_channels=3, + num_blocks=4, + blocks_temp_li=[False, False, False, False], + block_out_channels=(64,), + layers_per_block=2, + norm_num_groups=32, + act_fn="silu", + norm_type="group", # group, spatial + ): + super().__init__() + self.layers_per_block = layers_per_block + self.blocks_temp_li = blocks_temp_li + + self.conv_in = nn.Conv2d( + in_channels, + block_out_channels[-1], + kernel_size=3, + stride=1, + padding=1, + ) + + self.temp_conv_in = nn.Conv3d( + block_out_channels[-1], + block_out_channels[-1], + (3,1,1), + padding = (1, 0, 0) + ) + + self.mid_block = None + self.up_blocks = nn.ModuleList([]) + + temb_channels = in_channels if norm_type == "spatial" else None + + # mid + self.mid_block = UNetMidBlock3DConv( + in_channels=block_out_channels[-1], + resnet_eps=1e-6, + resnet_act_fn=act_fn, + output_scale_factor=1, + resnet_time_scale_shift="default" if norm_type == "group" else norm_type, + attention_head_dim=block_out_channels[-1], + resnet_groups=norm_num_groups, + temb_channels=temb_channels, + ) + + # up + reversed_block_out_channels = list(reversed(block_out_channels)) + output_channel = reversed_block_out_channels[0] + for i in range(num_blocks): + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + + is_final_block = i == len(block_out_channels) - 1 + + up_block = UpDecoderBlock3D( + num_layers=self.layers_per_block + 1, + in_channels=prev_output_channel, + out_channels=output_channel, + add_upsample=not is_final_block, + add_temp_upsample=blocks_temp_li[i], + resnet_eps=1e-6, + resnet_act_fn=act_fn, + resnet_groups=norm_num_groups, + temb_channels=temb_channels, + resnet_time_scale_shift=norm_type, + ) + self.up_blocks.append(up_block) + prev_output_channel = output_channel + + # out + if norm_type == "spatial": + self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels) + else: + self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) + self.conv_act = nn.SiLU() + + self.temp_conv_out = nn.Conv3d(block_out_channels[0], block_out_channels[0], (3,1,1), padding = (1, 0, 0)) + self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) + + nn.init.zeros_(self.temp_conv_in.weight) + nn.init.zeros_(self.temp_conv_in.bias) + nn.init.zeros_(self.temp_conv_out.weight) + nn.init.zeros_(self.temp_conv_out.bias) + + self.gradient_checkpointing = False + + def forward(self, z): + bz = z.shape[0] + sample = rearrange(z, 'b c n h w -> (b n) c h w') + sample = self.conv_in(sample) + + sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz) + temp_sample = sample + sample = self.temp_conv_in(sample) + sample = sample+temp_sample + + upscale_dtype = next(iter(self.up_blocks.parameters())).dtype + # middle + sample = self.mid_block(sample) + sample = sample.to(upscale_dtype) + + # up + for b_id, up_block in enumerate(self.up_blocks): + sample = up_block(sample) + + # post-process + sample = rearrange(sample, 'b c n h w -> (b n) c h w') + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + + sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz) + temp_sample = sample + sample = self.temp_conv_out(sample) + sample = sample+temp_sample + sample = rearrange(sample, 'b c n h w -> (b n) c h w') + + sample = self.conv_out(sample) + sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz) + return sample + + + +class AllegroAutoencoderKL3D(ModelMixin, ConfigMixin): + r""" + A VAE model with KL loss for encoding images into latents and decoding latent representations into images. + + This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented + for all models (such as downloading or saving). + + Parameters: + in_channels (int, *optional*, defaults to 3): Number of channels in the input image. + out_channels (int, *optional*, defaults to 3): Number of channels in the output. + down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): + Tuple of downsample block types. + up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): + Tuple of upsample block types. + block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): + Tuple of block output channels. + act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. + latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space. + sample_size (`int`, *optional*, defaults to `256`): Spatial Tiling Size. + tile_overlap (`tuple`, *optional*, defaults to `(120, 80`): Spatial overlapping size while tiling (height, width) + chunk_len (`int`, *optional*, defaults to `24`): Temporal Tiling Size. + t_over (`int`, *optional*, defaults to `8`): Temporal overlapping size while tiling + scaling_factor (`float`, *optional*, defaults to 0.13235): + The component-wise standard deviation of the trained latent space computed using the first batch of the + training set. This is used to scale the latent space to have unit variance when training the diffusion + model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the + diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 + / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image + Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. + force_upcast (`bool`, *optional*, default to `True`): + If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE + can be fine-tuned / trained to a lower range without loosing too much precision in which case + `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix + blocks_tempdown_li (`List`, *optional*, defaults to `[True, True, False, False]`): Each item indicates whether each TemporalBlock in the Encoder performs temporal downsampling. + blocks_tempup_li (`List`, *optional*, defaults to `[False, True, True, False]`): Each item indicates whether each TemporalBlock in the Decoder performs temporal upsampling. + load_mode (`str`, *optional*, defaults to `full`): Load mode for the model. Can be one of `full`, `encoder_only`, `decoder_only`. which corresponds to loading the full model state dicts, only the encoder state dicts, or only the decoder state dicts. + """ + + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + in_channels: int = 3, + out_channels: int = 3, + down_block_num: int = 4, + up_block_num: int = 4, + block_out_channels: Tuple[int] = (128,256,512,512), + layers_per_block: int = 2, + act_fn: str = "silu", + latent_channels: int = 4, + norm_num_groups: int = 32, + sample_size: int = 320, + tile_overlap: tuple = (120, 80), + force_upcast: bool = True, + chunk_len: int = 24, + t_over: int = 8, + scale_factor: float = 0.13235, + blocks_tempdown_li=[True, True, False, False], + blocks_tempup_li=[False, True, True, False], + load_mode = 'full', + ): + super().__init__() + + self.blocks_tempdown_li = blocks_tempdown_li + self.blocks_tempup_li = blocks_tempup_li + # pass init params to Encoder + self.load_mode = load_mode + if load_mode in ['full', 'encoder_only']: + self.encoder = Encoder3D( + in_channels=in_channels, + out_channels=latent_channels, + num_blocks=down_block_num, + blocks_temp_li=blocks_tempdown_li, + block_out_channels=block_out_channels, + layers_per_block=layers_per_block, + act_fn=act_fn, + norm_num_groups=norm_num_groups, + double_z=True, + ) + self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) + + if load_mode in ['full', 'decoder_only']: + # pass init params to Decoder + self.decoder = Decoder3D( + in_channels=latent_channels, + out_channels=out_channels, + num_blocks=up_block_num, + blocks_temp_li=blocks_tempup_li, + block_out_channels=block_out_channels, + layers_per_block=layers_per_block, + norm_num_groups=norm_num_groups, + act_fn=act_fn, + ) + self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) + + + # only relevant if vae tiling is enabled + sample_size = ( + sample_size[0] + if isinstance(sample_size, (list, tuple)) + else sample_size + ) + self.tile_overlap = tile_overlap + self.vae_scale_factor=[4, 8, 8] + self.scale_factor = scale_factor + self.sample_size = sample_size + self.chunk_len = chunk_len + self.t_over = t_over + + self.latent_chunk_len = self.chunk_len//4 + self.latent_t_over = self.t_over//4 + self.kernel = (self.chunk_len, self.sample_size, self.sample_size) #(24, 256, 256) + self.stride = (self.chunk_len - self.t_over, self.sample_size-self.tile_overlap[0], self.sample_size-self.tile_overlap[1]) # (16, 112, 192) + + + def encode(self, input_imgs: torch.Tensor, return_dict: bool = True, local_batch_size=1) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: + KERNEL = self.kernel + STRIDE = self.stride + LOCAL_BS = local_batch_size + OUT_C = 8 + + B, C, N, H, W = input_imgs.shape + + + out_n = math.floor((N - KERNEL[0]) / STRIDE[0]) + 1 + out_h = math.floor((H - KERNEL[1]) / STRIDE[1]) + 1 + out_w = math.floor((W - KERNEL[2]) / STRIDE[2]) + 1 + + ## cut video into overlapped small cubes and batch forward + num = 0 + + out_latent = torch.zeros((out_n*out_h*out_w, OUT_C, KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8), device=input_imgs.device, dtype=input_imgs.dtype) + vae_batch_input = torch.zeros((LOCAL_BS, C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_imgs.device, dtype=input_imgs.dtype) + + for i in range(out_n): + for j in range(out_h): + for k in range(out_w): + n_start, n_end = i * STRIDE[0], i * STRIDE[0] + KERNEL[0] + h_start, h_end = j * STRIDE[1], j * STRIDE[1] + KERNEL[1] + w_start, w_end = k * STRIDE[2], k * STRIDE[2] + KERNEL[2] + video_cube = input_imgs[:, :, n_start:n_end, h_start:h_end, w_start:w_end] + vae_batch_input[num%LOCAL_BS] = video_cube + + if num%LOCAL_BS == LOCAL_BS-1 or num == out_n*out_h*out_w-1: + latent = self.encoder(vae_batch_input) + + if num == out_n*out_h*out_w-1 and num%LOCAL_BS != LOCAL_BS-1: + out_latent[num-num%LOCAL_BS:] = latent[:num%LOCAL_BS+1] + else: + out_latent[num-LOCAL_BS+1:num+1] = latent + vae_batch_input = torch.zeros((LOCAL_BS, C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_imgs.device, dtype=input_imgs.dtype) + num+=1 + + ## flatten the batched out latent to videos and supress the overlapped parts + B, C, N, H, W = input_imgs.shape + + out_video_cube = torch.zeros((B, OUT_C, N//4, H//8, W//8), device=input_imgs.device, dtype=input_imgs.dtype) + OUT_KERNEL = KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8 + OUT_STRIDE = STRIDE[0]//4, STRIDE[1]//8, STRIDE[2]//8 + OVERLAP = OUT_KERNEL[0]-OUT_STRIDE[0], OUT_KERNEL[1]-OUT_STRIDE[1], OUT_KERNEL[2]-OUT_STRIDE[2] + + for i in range(out_n): + n_start, n_end = i * OUT_STRIDE[0], i * OUT_STRIDE[0] + OUT_KERNEL[0] + for j in range(out_h): + h_start, h_end = j * OUT_STRIDE[1], j * OUT_STRIDE[1] + OUT_KERNEL[1] + for k in range(out_w): + w_start, w_end = k * OUT_STRIDE[2], k * OUT_STRIDE[2] + OUT_KERNEL[2] + latent_mean_blend = prepare_for_blend((i, out_n, OVERLAP[0]), (j, out_h, OVERLAP[1]), (k, out_w, OVERLAP[2]), out_latent[i*out_h*out_w+j*out_w+k].unsqueeze(0)) + out_video_cube[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += latent_mean_blend + + ## final conv + out_video_cube = rearrange(out_video_cube, 'b c n h w -> (b n) c h w') + out_video_cube = self.quant_conv(out_video_cube) + out_video_cube = rearrange(out_video_cube, '(b n) c h w -> b c n h w', b=B) + + posterior = DiagonalGaussianDistribution(out_video_cube) + + if not return_dict: + return (posterior,) + + return AutoencoderKLOutput(latent_dist=posterior) + + + def decode(self, input_latents: torch.Tensor, return_dict: bool = True, local_batch_size=1) -> Union[DecoderOutput, torch.Tensor]: + KERNEL = self.kernel + STRIDE = self.stride + + LOCAL_BS = local_batch_size + OUT_C = 3 + IN_KERNEL = KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8 + IN_STRIDE = STRIDE[0]//4, STRIDE[1]//8, STRIDE[2]//8 + + B, C, N, H, W = input_latents.shape + + ## post quant conv (a mapping) + input_latents = rearrange(input_latents, 'b c n h w -> (b n) c h w') + input_latents = self.post_quant_conv(input_latents) + input_latents = rearrange(input_latents, '(b n) c h w -> b c n h w', b=B) + + ## out tensor shape + out_n = math.floor((N - IN_KERNEL[0]) / IN_STRIDE[0]) + 1 + out_h = math.floor((H - IN_KERNEL[1]) / IN_STRIDE[1]) + 1 + out_w = math.floor((W - IN_KERNEL[2]) / IN_STRIDE[2]) + 1 + + ## cut latent into overlapped small cubes and batch forward + num = 0 + decoded_cube = torch.zeros((out_n*out_h*out_w, OUT_C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype) + vae_batch_input = torch.zeros((LOCAL_BS, C, IN_KERNEL[0], IN_KERNEL[1], IN_KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype) + for i in range(out_n): + for j in range(out_h): + for k in range(out_w): + n_start, n_end = i * IN_STRIDE[0], i * IN_STRIDE[0] + IN_KERNEL[0] + h_start, h_end = j * IN_STRIDE[1], j * IN_STRIDE[1] + IN_KERNEL[1] + w_start, w_end = k * IN_STRIDE[2], k * IN_STRIDE[2] + IN_KERNEL[2] + latent_cube = input_latents[:, :, n_start:n_end, h_start:h_end, w_start:w_end] + vae_batch_input[num%LOCAL_BS] = latent_cube + if num%LOCAL_BS == LOCAL_BS-1 or num == out_n*out_h*out_w-1: + + latent = self.decoder(vae_batch_input) + + if num == out_n*out_h*out_w-1 and num%LOCAL_BS != LOCAL_BS-1: + decoded_cube[num-num%LOCAL_BS:] = latent[:num%LOCAL_BS+1] + else: + decoded_cube[num-LOCAL_BS+1:num+1] = latent + vae_batch_input = torch.zeros((LOCAL_BS, C, IN_KERNEL[0], IN_KERNEL[1], IN_KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype) + num+=1 + B, C, N, H, W = input_latents.shape + + out_video = torch.zeros((B, OUT_C, N*4, H*8, W*8), device=input_latents.device, dtype=input_latents.dtype) + OVERLAP = KERNEL[0]-STRIDE[0], KERNEL[1]-STRIDE[1], KERNEL[2]-STRIDE[2] + for i in range(out_n): + n_start, n_end = i * STRIDE[0], i * STRIDE[0] + KERNEL[0] + for j in range(out_h): + h_start, h_end = j * STRIDE[1], j * STRIDE[1] + KERNEL[1] + for k in range(out_w): + w_start, w_end = k * STRIDE[2], k * STRIDE[2] + KERNEL[2] + out_video_blend = prepare_for_blend((i, out_n, OVERLAP[0]), (j, out_h, OVERLAP[1]), (k, out_w, OVERLAP[2]), decoded_cube[i*out_h*out_w+j*out_w+k].unsqueeze(0)) + out_video[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += out_video_blend + + out_video = rearrange(out_video, 'b c t h w -> b t c h w').contiguous() + + decoded = out_video + if not return_dict: + return (decoded,) + + return DecoderOutput(sample=decoded) + + def forward( + self, + sample: torch.Tensor, + sample_posterior: bool = False, + return_dict: bool = True, + generator: Optional[torch.Generator] = None, + encoder_local_batch_size: int = 2, + decoder_local_batch_size: int = 2, + ) -> Union[DecoderOutput, torch.Tensor]: + r""" + Args: + sample (`torch.Tensor`): Input sample. + sample_posterior (`bool`, *optional*, defaults to `False`): + Whether to sample from the posterior. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`DecoderOutput`] instead of a plain tuple. + generator (`torch.Generator`, *optional*): + PyTorch random number generator. + encoder_local_batch_size (`int`, *optional*, defaults to 2): + Local batch size for the encoder's batch inference. + decoder_local_batch_size (`int`, *optional*, defaults to 2): + Local batch size for the decoder's batch inference. + """ + x = sample + posterior = self.encode(x, local_batch_size=encoder_local_batch_size).latent_dist + if sample_posterior: + z = posterior.sample(generator=generator) + else: + z = posterior.mode() + dec = self.decode(z, local_batch_size=decoder_local_batch_size).sample + + if not return_dict: + return (dec,) + + return DecoderOutput(sample=dec) + + @classmethod + def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): + kwargs["torch_type"] = torch.float32 + return super().from_pretrained(pretrained_model_name_or_path, **kwargs) + + +def prepare_for_blend(n_param, h_param, w_param, x): + n, n_max, overlap_n = n_param + h, h_max, overlap_h = h_param + w, w_max, overlap_w = w_param + if overlap_n > 0: + if n > 0: # the head overlap part decays from 0 to 1 + x[:,:,0:overlap_n,:,:] = x[:,:,0:overlap_n,:,:] * (torch.arange(0, overlap_n).float().to(x.device) / overlap_n).reshape(overlap_n,1,1) + if n < n_max-1: # the tail overlap part decays from 1 to 0 + x[:,:,-overlap_n:,:,:] = x[:,:,-overlap_n:,:,:] * (1 - torch.arange(0, overlap_n).float().to(x.device) / overlap_n).reshape(overlap_n,1,1) + if h > 0: + x[:,:,:,0:overlap_h,:] = x[:,:,:,0:overlap_h,:] * (torch.arange(0, overlap_h).float().to(x.device) / overlap_h).reshape(overlap_h,1) + if h < h_max-1: + x[:,:,:,-overlap_h:,:] = x[:,:,:,-overlap_h:,:] * (1 - torch.arange(0, overlap_h).float().to(x.device) / overlap_h).reshape(overlap_h,1) + if w > 0: + x[:,:,:,:,0:overlap_w] = x[:,:,:,:,0:overlap_w] * (torch.arange(0, overlap_w).float().to(x.device) / overlap_w) + if w < w_max-1: + x[:,:,:,:,-overlap_w:] = x[:,:,:,:,-overlap_w:] * (1 - torch.arange(0, overlap_w).float().to(x.device) / overlap_w) + return x