Update text_encoder/config.json

This commit is contained in:
LarryTsai 2024-10-21 10:51:54 +08:00
parent 4cc135a364
commit 8b0e3d063a
14 changed files with 4 additions and 3698 deletions

@ -1,6 +1,6 @@
{ {
"_class_name": "EulerAncestralDiscreteScheduler", "_class_name": "EulerAncestralDiscreteScheduler",
"_diffusers_version": "0.30.3", "_diffusers_version": "0.28.0",
"beta_end": 0.02, "beta_end": 0.02,
"beta_schedule": "linear", "beta_schedule": "linear",
"beta_start": 0.0001, "beta_start": 0.0001,

@ -1,9 +1,7 @@
{ {
"_name_or_path": "/cpfs/data/user/larrytsai/Projects/Yi-VG/allegro/text_encoder",
"architectures": [ "architectures": [
"T5EncoderModel" "T5EncoderModel"
], ],
"classifier_dropout": 0.0,
"d_ff": 10240, "d_ff": 10240,
"d_kv": 64, "d_kv": 64,
"d_model": 4096, "d_model": 4096,
@ -26,7 +24,7 @@
"relative_attention_num_buckets": 32, "relative_attention_num_buckets": 32,
"tie_word_embeddings": false, "tie_word_embeddings": false,
"torch_dtype": "float32", "torch_dtype": "float32",
"transformers_version": "4.40.1", "transformers_version": "4.21.1",
"use_cache": true, "use_cache": true,
"vocab_size": 32128 "vocab_size": 32128
} }

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

@ -1,226 +0,0 @@
{
"metadata": {
"total_size": 19049242624
},
"weight_map": {
"encoder.block.0.layer.0.SelfAttention.k.weight": "model-00001-of-00004.safetensors",
"encoder.block.0.layer.0.SelfAttention.o.weight": "model-00001-of-00004.safetensors",
"encoder.block.0.layer.0.SelfAttention.q.weight": "model-00001-of-00004.safetensors",
"encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight": "model-00001-of-00004.safetensors",
"encoder.block.0.layer.0.SelfAttention.v.weight": "model-00001-of-00004.safetensors",
"encoder.block.0.layer.0.layer_norm.weight": "model-00001-of-00004.safetensors",
"encoder.block.0.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00004.safetensors",
"encoder.block.0.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00004.safetensors",
"encoder.block.0.layer.1.DenseReluDense.wo.weight": "model-00001-of-00004.safetensors",
"encoder.block.0.layer.1.layer_norm.weight": "model-00001-of-00004.safetensors",
"encoder.block.1.layer.0.SelfAttention.k.weight": "model-00001-of-00004.safetensors",
"encoder.block.1.layer.0.SelfAttention.o.weight": "model-00001-of-00004.safetensors",
"encoder.block.1.layer.0.SelfAttention.q.weight": "model-00001-of-00004.safetensors",
"encoder.block.1.layer.0.SelfAttention.v.weight": "model-00001-of-00004.safetensors",
"encoder.block.1.layer.0.layer_norm.weight": "model-00001-of-00004.safetensors",
"encoder.block.1.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00004.safetensors",
"encoder.block.1.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00004.safetensors",
"encoder.block.1.layer.1.DenseReluDense.wo.weight": "model-00001-of-00004.safetensors",
"encoder.block.1.layer.1.layer_norm.weight": "model-00001-of-00004.safetensors",
"encoder.block.10.layer.0.SelfAttention.k.weight": "model-00002-of-00004.safetensors",
"encoder.block.10.layer.0.SelfAttention.o.weight": "model-00002-of-00004.safetensors",
"encoder.block.10.layer.0.SelfAttention.q.weight": "model-00002-of-00004.safetensors",
"encoder.block.10.layer.0.SelfAttention.v.weight": "model-00002-of-00004.safetensors",
"encoder.block.10.layer.0.layer_norm.weight": "model-00002-of-00004.safetensors",
"encoder.block.10.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00004.safetensors",
"encoder.block.10.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00004.safetensors",
"encoder.block.10.layer.1.DenseReluDense.wo.weight": "model-00002-of-00004.safetensors",
"encoder.block.10.layer.1.layer_norm.weight": "model-00002-of-00004.safetensors",
"encoder.block.11.layer.0.SelfAttention.k.weight": "model-00002-of-00004.safetensors",
"encoder.block.11.layer.0.SelfAttention.o.weight": "model-00002-of-00004.safetensors",
"encoder.block.11.layer.0.SelfAttention.q.weight": "model-00002-of-00004.safetensors",
"encoder.block.11.layer.0.SelfAttention.v.weight": "model-00002-of-00004.safetensors",
"encoder.block.11.layer.0.layer_norm.weight": "model-00002-of-00004.safetensors",
"encoder.block.11.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00004.safetensors",
"encoder.block.11.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00004.safetensors",
"encoder.block.11.layer.1.DenseReluDense.wo.weight": "model-00002-of-00004.safetensors",
"encoder.block.11.layer.1.layer_norm.weight": "model-00002-of-00004.safetensors",
"encoder.block.12.layer.0.SelfAttention.k.weight": "model-00002-of-00004.safetensors",
"encoder.block.12.layer.0.SelfAttention.o.weight": "model-00003-of-00004.safetensors",
"encoder.block.12.layer.0.SelfAttention.q.weight": "model-00002-of-00004.safetensors",
"encoder.block.12.layer.0.SelfAttention.v.weight": "model-00002-of-00004.safetensors",
"encoder.block.12.layer.0.layer_norm.weight": "model-00003-of-00004.safetensors",
"encoder.block.12.layer.1.DenseReluDense.wi_0.weight": "model-00003-of-00004.safetensors",
"encoder.block.12.layer.1.DenseReluDense.wi_1.weight": "model-00003-of-00004.safetensors",
"encoder.block.12.layer.1.DenseReluDense.wo.weight": "model-00003-of-00004.safetensors",
"encoder.block.12.layer.1.layer_norm.weight": "model-00003-of-00004.safetensors",
"encoder.block.13.layer.0.SelfAttention.k.weight": "model-00003-of-00004.safetensors",
"encoder.block.13.layer.0.SelfAttention.o.weight": "model-00003-of-00004.safetensors",
"encoder.block.13.layer.0.SelfAttention.q.weight": "model-00003-of-00004.safetensors",
"encoder.block.13.layer.0.SelfAttention.v.weight": "model-00003-of-00004.safetensors",
"encoder.block.13.layer.0.layer_norm.weight": "model-00003-of-00004.safetensors",
"encoder.block.13.layer.1.DenseReluDense.wi_0.weight": "model-00003-of-00004.safetensors",
"encoder.block.13.layer.1.DenseReluDense.wi_1.weight": "model-00003-of-00004.safetensors",
"encoder.block.13.layer.1.DenseReluDense.wo.weight": "model-00003-of-00004.safetensors",
"encoder.block.13.layer.1.layer_norm.weight": "model-00003-of-00004.safetensors",
"encoder.block.14.layer.0.SelfAttention.k.weight": "model-00003-of-00004.safetensors",
"encoder.block.14.layer.0.SelfAttention.o.weight": "model-00003-of-00004.safetensors",
"encoder.block.14.layer.0.SelfAttention.q.weight": "model-00003-of-00004.safetensors",
"encoder.block.14.layer.0.SelfAttention.v.weight": "model-00003-of-00004.safetensors",
"encoder.block.14.layer.0.layer_norm.weight": "model-00003-of-00004.safetensors",
"encoder.block.14.layer.1.DenseReluDense.wi_0.weight": "model-00003-of-00004.safetensors",
"encoder.block.14.layer.1.DenseReluDense.wi_1.weight": "model-00003-of-00004.safetensors",
"encoder.block.14.layer.1.DenseReluDense.wo.weight": "model-00003-of-00004.safetensors",
"encoder.block.14.layer.1.layer_norm.weight": "model-00003-of-00004.safetensors",
"encoder.block.15.layer.0.SelfAttention.k.weight": "model-00003-of-00004.safetensors",
"encoder.block.15.layer.0.SelfAttention.o.weight": "model-00003-of-00004.safetensors",
"encoder.block.15.layer.0.SelfAttention.q.weight": "model-00003-of-00004.safetensors",
"encoder.block.15.layer.0.SelfAttention.v.weight": "model-00003-of-00004.safetensors",
"encoder.block.15.layer.0.layer_norm.weight": "model-00003-of-00004.safetensors",
"encoder.block.15.layer.1.DenseReluDense.wi_0.weight": "model-00003-of-00004.safetensors",
"encoder.block.15.layer.1.DenseReluDense.wi_1.weight": "model-00003-of-00004.safetensors",
"encoder.block.15.layer.1.DenseReluDense.wo.weight": "model-00003-of-00004.safetensors",
"encoder.block.15.layer.1.layer_norm.weight": "model-00003-of-00004.safetensors",
"encoder.block.16.layer.0.SelfAttention.k.weight": "model-00003-of-00004.safetensors",
"encoder.block.16.layer.0.SelfAttention.o.weight": "model-00003-of-00004.safetensors",
"encoder.block.16.layer.0.SelfAttention.q.weight": "model-00003-of-00004.safetensors",
"encoder.block.16.layer.0.SelfAttention.v.weight": "model-00003-of-00004.safetensors",
"encoder.block.16.layer.0.layer_norm.weight": "model-00003-of-00004.safetensors",
"encoder.block.16.layer.1.DenseReluDense.wi_0.weight": "model-00003-of-00004.safetensors",
"encoder.block.16.layer.1.DenseReluDense.wi_1.weight": "model-00003-of-00004.safetensors",
"encoder.block.16.layer.1.DenseReluDense.wo.weight": "model-00003-of-00004.safetensors",
"encoder.block.16.layer.1.layer_norm.weight": "model-00003-of-00004.safetensors",
"encoder.block.17.layer.0.SelfAttention.k.weight": "model-00003-of-00004.safetensors",
"encoder.block.17.layer.0.SelfAttention.o.weight": "model-00003-of-00004.safetensors",
"encoder.block.17.layer.0.SelfAttention.q.weight": "model-00003-of-00004.safetensors",
"encoder.block.17.layer.0.SelfAttention.v.weight": "model-00003-of-00004.safetensors",
"encoder.block.17.layer.0.layer_norm.weight": "model-00003-of-00004.safetensors",
"encoder.block.17.layer.1.DenseReluDense.wi_0.weight": "model-00003-of-00004.safetensors",
"encoder.block.17.layer.1.DenseReluDense.wi_1.weight": "model-00003-of-00004.safetensors",
"encoder.block.17.layer.1.DenseReluDense.wo.weight": "model-00003-of-00004.safetensors",
"encoder.block.17.layer.1.layer_norm.weight": "model-00003-of-00004.safetensors",
"encoder.block.18.layer.0.SelfAttention.k.weight": "model-00003-of-00004.safetensors",
"encoder.block.18.layer.0.SelfAttention.o.weight": "model-00003-of-00004.safetensors",
"encoder.block.18.layer.0.SelfAttention.q.weight": "model-00003-of-00004.safetensors",
"encoder.block.18.layer.0.SelfAttention.v.weight": "model-00003-of-00004.safetensors",
"encoder.block.18.layer.0.layer_norm.weight": "model-00003-of-00004.safetensors",
"encoder.block.18.layer.1.DenseReluDense.wi_0.weight": "model-00003-of-00004.safetensors",
"encoder.block.18.layer.1.DenseReluDense.wi_1.weight": "model-00004-of-00004.safetensors",
"encoder.block.18.layer.1.DenseReluDense.wo.weight": "model-00004-of-00004.safetensors",
"encoder.block.18.layer.1.layer_norm.weight": "model-00004-of-00004.safetensors",
"encoder.block.19.layer.0.SelfAttention.k.weight": "model-00004-of-00004.safetensors",
"encoder.block.19.layer.0.SelfAttention.o.weight": "model-00004-of-00004.safetensors",
"encoder.block.19.layer.0.SelfAttention.q.weight": "model-00004-of-00004.safetensors",
"encoder.block.19.layer.0.SelfAttention.v.weight": "model-00004-of-00004.safetensors",
"encoder.block.19.layer.0.layer_norm.weight": "model-00004-of-00004.safetensors",
"encoder.block.19.layer.1.DenseReluDense.wi_0.weight": "model-00004-of-00004.safetensors",
"encoder.block.19.layer.1.DenseReluDense.wi_1.weight": "model-00004-of-00004.safetensors",
"encoder.block.19.layer.1.DenseReluDense.wo.weight": "model-00004-of-00004.safetensors",
"encoder.block.19.layer.1.layer_norm.weight": "model-00004-of-00004.safetensors",
"encoder.block.2.layer.0.SelfAttention.k.weight": "model-00001-of-00004.safetensors",
"encoder.block.2.layer.0.SelfAttention.o.weight": "model-00001-of-00004.safetensors",
"encoder.block.2.layer.0.SelfAttention.q.weight": "model-00001-of-00004.safetensors",
"encoder.block.2.layer.0.SelfAttention.v.weight": "model-00001-of-00004.safetensors",
"encoder.block.2.layer.0.layer_norm.weight": "model-00001-of-00004.safetensors",
"encoder.block.2.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00004.safetensors",
"encoder.block.2.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00004.safetensors",
"encoder.block.2.layer.1.DenseReluDense.wo.weight": "model-00001-of-00004.safetensors",
"encoder.block.2.layer.1.layer_norm.weight": "model-00001-of-00004.safetensors",
"encoder.block.20.layer.0.SelfAttention.k.weight": "model-00004-of-00004.safetensors",
"encoder.block.20.layer.0.SelfAttention.o.weight": "model-00004-of-00004.safetensors",
"encoder.block.20.layer.0.SelfAttention.q.weight": "model-00004-of-00004.safetensors",
"encoder.block.20.layer.0.SelfAttention.v.weight": "model-00004-of-00004.safetensors",
"encoder.block.20.layer.0.layer_norm.weight": "model-00004-of-00004.safetensors",
"encoder.block.20.layer.1.DenseReluDense.wi_0.weight": "model-00004-of-00004.safetensors",
"encoder.block.20.layer.1.DenseReluDense.wi_1.weight": "model-00004-of-00004.safetensors",
"encoder.block.20.layer.1.DenseReluDense.wo.weight": "model-00004-of-00004.safetensors",
"encoder.block.20.layer.1.layer_norm.weight": "model-00004-of-00004.safetensors",
"encoder.block.21.layer.0.SelfAttention.k.weight": "model-00004-of-00004.safetensors",
"encoder.block.21.layer.0.SelfAttention.o.weight": "model-00004-of-00004.safetensors",
"encoder.block.21.layer.0.SelfAttention.q.weight": "model-00004-of-00004.safetensors",
"encoder.block.21.layer.0.SelfAttention.v.weight": "model-00004-of-00004.safetensors",
"encoder.block.21.layer.0.layer_norm.weight": "model-00004-of-00004.safetensors",
"encoder.block.21.layer.1.DenseReluDense.wi_0.weight": "model-00004-of-00004.safetensors",
"encoder.block.21.layer.1.DenseReluDense.wi_1.weight": "model-00004-of-00004.safetensors",
"encoder.block.21.layer.1.DenseReluDense.wo.weight": "model-00004-of-00004.safetensors",
"encoder.block.21.layer.1.layer_norm.weight": "model-00004-of-00004.safetensors",
"encoder.block.22.layer.0.SelfAttention.k.weight": "model-00004-of-00004.safetensors",
"encoder.block.22.layer.0.SelfAttention.o.weight": "model-00004-of-00004.safetensors",
"encoder.block.22.layer.0.SelfAttention.q.weight": "model-00004-of-00004.safetensors",
"encoder.block.22.layer.0.SelfAttention.v.weight": "model-00004-of-00004.safetensors",
"encoder.block.22.layer.0.layer_norm.weight": "model-00004-of-00004.safetensors",
"encoder.block.22.layer.1.DenseReluDense.wi_0.weight": "model-00004-of-00004.safetensors",
"encoder.block.22.layer.1.DenseReluDense.wi_1.weight": "model-00004-of-00004.safetensors",
"encoder.block.22.layer.1.DenseReluDense.wo.weight": "model-00004-of-00004.safetensors",
"encoder.block.22.layer.1.layer_norm.weight": "model-00004-of-00004.safetensors",
"encoder.block.23.layer.0.SelfAttention.k.weight": "model-00004-of-00004.safetensors",
"encoder.block.23.layer.0.SelfAttention.o.weight": "model-00004-of-00004.safetensors",
"encoder.block.23.layer.0.SelfAttention.q.weight": "model-00004-of-00004.safetensors",
"encoder.block.23.layer.0.SelfAttention.v.weight": "model-00004-of-00004.safetensors",
"encoder.block.23.layer.0.layer_norm.weight": "model-00004-of-00004.safetensors",
"encoder.block.23.layer.1.DenseReluDense.wi_0.weight": "model-00004-of-00004.safetensors",
"encoder.block.23.layer.1.DenseReluDense.wi_1.weight": "model-00004-of-00004.safetensors",
"encoder.block.23.layer.1.DenseReluDense.wo.weight": "model-00004-of-00004.safetensors",
"encoder.block.23.layer.1.layer_norm.weight": "model-00004-of-00004.safetensors",
"encoder.block.3.layer.0.SelfAttention.k.weight": "model-00001-of-00004.safetensors",
"encoder.block.3.layer.0.SelfAttention.o.weight": "model-00001-of-00004.safetensors",
"encoder.block.3.layer.0.SelfAttention.q.weight": "model-00001-of-00004.safetensors",
"encoder.block.3.layer.0.SelfAttention.v.weight": "model-00001-of-00004.safetensors",
"encoder.block.3.layer.0.layer_norm.weight": "model-00001-of-00004.safetensors",
"encoder.block.3.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00004.safetensors",
"encoder.block.3.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00004.safetensors",
"encoder.block.3.layer.1.DenseReluDense.wo.weight": "model-00001-of-00004.safetensors",
"encoder.block.3.layer.1.layer_norm.weight": "model-00001-of-00004.safetensors",
"encoder.block.4.layer.0.SelfAttention.k.weight": "model-00001-of-00004.safetensors",
"encoder.block.4.layer.0.SelfAttention.o.weight": "model-00001-of-00004.safetensors",
"encoder.block.4.layer.0.SelfAttention.q.weight": "model-00001-of-00004.safetensors",
"encoder.block.4.layer.0.SelfAttention.v.weight": "model-00001-of-00004.safetensors",
"encoder.block.4.layer.0.layer_norm.weight": "model-00001-of-00004.safetensors",
"encoder.block.4.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00004.safetensors",
"encoder.block.4.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00004.safetensors",
"encoder.block.4.layer.1.DenseReluDense.wo.weight": "model-00001-of-00004.safetensors",
"encoder.block.4.layer.1.layer_norm.weight": "model-00001-of-00004.safetensors",
"encoder.block.5.layer.0.SelfAttention.k.weight": "model-00001-of-00004.safetensors",
"encoder.block.5.layer.0.SelfAttention.o.weight": "model-00001-of-00004.safetensors",
"encoder.block.5.layer.0.SelfAttention.q.weight": "model-00001-of-00004.safetensors",
"encoder.block.5.layer.0.SelfAttention.v.weight": "model-00001-of-00004.safetensors",
"encoder.block.5.layer.0.layer_norm.weight": "model-00001-of-00004.safetensors",
"encoder.block.5.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00004.safetensors",
"encoder.block.5.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00004.safetensors",
"encoder.block.5.layer.1.DenseReluDense.wo.weight": "model-00002-of-00004.safetensors",
"encoder.block.5.layer.1.layer_norm.weight": "model-00002-of-00004.safetensors",
"encoder.block.6.layer.0.SelfAttention.k.weight": "model-00002-of-00004.safetensors",
"encoder.block.6.layer.0.SelfAttention.o.weight": "model-00002-of-00004.safetensors",
"encoder.block.6.layer.0.SelfAttention.q.weight": "model-00002-of-00004.safetensors",
"encoder.block.6.layer.0.SelfAttention.v.weight": "model-00002-of-00004.safetensors",
"encoder.block.6.layer.0.layer_norm.weight": "model-00002-of-00004.safetensors",
"encoder.block.6.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00004.safetensors",
"encoder.block.6.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00004.safetensors",
"encoder.block.6.layer.1.DenseReluDense.wo.weight": "model-00002-of-00004.safetensors",
"encoder.block.6.layer.1.layer_norm.weight": "model-00002-of-00004.safetensors",
"encoder.block.7.layer.0.SelfAttention.k.weight": "model-00002-of-00004.safetensors",
"encoder.block.7.layer.0.SelfAttention.o.weight": "model-00002-of-00004.safetensors",
"encoder.block.7.layer.0.SelfAttention.q.weight": "model-00002-of-00004.safetensors",
"encoder.block.7.layer.0.SelfAttention.v.weight": "model-00002-of-00004.safetensors",
"encoder.block.7.layer.0.layer_norm.weight": "model-00002-of-00004.safetensors",
"encoder.block.7.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00004.safetensors",
"encoder.block.7.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00004.safetensors",
"encoder.block.7.layer.1.DenseReluDense.wo.weight": "model-00002-of-00004.safetensors",
"encoder.block.7.layer.1.layer_norm.weight": "model-00002-of-00004.safetensors",
"encoder.block.8.layer.0.SelfAttention.k.weight": "model-00002-of-00004.safetensors",
"encoder.block.8.layer.0.SelfAttention.o.weight": "model-00002-of-00004.safetensors",
"encoder.block.8.layer.0.SelfAttention.q.weight": "model-00002-of-00004.safetensors",
"encoder.block.8.layer.0.SelfAttention.v.weight": "model-00002-of-00004.safetensors",
"encoder.block.8.layer.0.layer_norm.weight": "model-00002-of-00004.safetensors",
"encoder.block.8.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00004.safetensors",
"encoder.block.8.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00004.safetensors",
"encoder.block.8.layer.1.DenseReluDense.wo.weight": "model-00002-of-00004.safetensors",
"encoder.block.8.layer.1.layer_norm.weight": "model-00002-of-00004.safetensors",
"encoder.block.9.layer.0.SelfAttention.k.weight": "model-00002-of-00004.safetensors",
"encoder.block.9.layer.0.SelfAttention.o.weight": "model-00002-of-00004.safetensors",
"encoder.block.9.layer.0.SelfAttention.q.weight": "model-00002-of-00004.safetensors",
"encoder.block.9.layer.0.SelfAttention.v.weight": "model-00002-of-00004.safetensors",
"encoder.block.9.layer.0.layer_norm.weight": "model-00002-of-00004.safetensors",
"encoder.block.9.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00004.safetensors",
"encoder.block.9.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00004.safetensors",
"encoder.block.9.layer.1.DenseReluDense.wo.weight": "model-00002-of-00004.safetensors",
"encoder.block.9.layer.1.layer_norm.weight": "model-00002-of-00004.safetensors",
"encoder.final_layer_norm.weight": "model-00004-of-00004.safetensors",
"shared.weight": "model-00001-of-00004.safetensors"
}
}

@ -1,6 +1,6 @@
{ {
"_class_name": "AllegroTransformer3DModel", "_class_name": "AllegroTransformer3DModel",
"_diffusers_version": "0.30.3", "_diffusers_version": "0.28.0",
"activation_fn": "gelu-approximate", "activation_fn": "gelu-approximate",
"attention_bias": true, "attention_bias": true,
"attention_head_dim": 96, "attention_head_dim": 96,

Binary file not shown.

Binary file not shown.

@ -1,694 +0,0 @@
{
"metadata": {
"total_size": 11087631424
},
"weight_map": {
"adaln_single.emb.timestep_embedder.linear_1.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"adaln_single.emb.timestep_embedder.linear_1.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"adaln_single.emb.timestep_embedder.linear_2.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"adaln_single.emb.timestep_embedder.linear_2.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"adaln_single.linear.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"adaln_single.linear.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"caption_projection.linear_1.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"caption_projection.linear_1.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"caption_projection.linear_2.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"caption_projection.linear_2.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"pos_embed.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"pos_embed.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"proj_out.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"proj_out.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.0.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.1.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.10.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.11.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.12.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.13.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.14.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.15.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.16.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.17.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.18.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.19.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.2.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.20.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.21.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.22.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.23.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.24.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.25.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.26.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.27.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.28.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.29.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.29.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.29.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.29.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.29.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.29.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.29.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.29.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.29.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.29.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.29.attn2.to_out.0.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.29.attn2.to_out.0.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.29.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.29.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.29.attn2.to_v.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.29.attn2.to_v.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.29.ff.net.0.proj.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.29.ff.net.0.proj.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.29.ff.net.2.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.29.ff.net.2.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.29.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.3.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.30.attn1.to_k.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.attn1.to_k.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.attn1.to_out.0.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.attn1.to_out.0.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.attn1.to_q.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.attn1.to_q.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.attn1.to_v.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.attn1.to_v.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.attn2.to_k.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.attn2.to_k.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.attn2.to_out.0.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.attn2.to_out.0.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.attn2.to_q.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.attn2.to_q.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.attn2.to_v.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.attn2.to_v.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.ff.net.0.proj.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.ff.net.0.proj.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.ff.net.2.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.ff.net.2.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.30.scale_shift_table": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.attn1.to_k.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.attn1.to_k.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.attn1.to_out.0.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.attn1.to_out.0.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.attn1.to_q.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.attn1.to_q.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.attn1.to_v.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.attn1.to_v.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.attn2.to_k.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.attn2.to_k.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.attn2.to_out.0.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.attn2.to_out.0.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.attn2.to_q.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.attn2.to_q.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.attn2.to_v.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.attn2.to_v.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.ff.net.0.proj.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.ff.net.0.proj.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.ff.net.2.bias": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.ff.net.2.weight": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.31.scale_shift_table": "diffusion_pytorch_model-00002-of-00002.safetensors",
"transformer_blocks.4.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.4.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.5.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.6.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.7.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.8.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.attn1.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.attn1.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.attn1.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.attn1.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.attn1.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.attn1.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.attn1.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.attn1.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.attn2.to_k.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.attn2.to_k.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.attn2.to_out.0.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.attn2.to_out.0.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.attn2.to_q.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.attn2.to_q.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.attn2.to_v.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.attn2.to_v.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.ff.net.0.proj.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.ff.net.0.proj.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.ff.net.2.bias": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.ff.net.2.weight": "diffusion_pytorch_model-00001-of-00002.safetensors",
"transformer_blocks.9.scale_shift_table": "diffusion_pytorch_model-00001-of-00002.safetensors"
}
}

File diff suppressed because it is too large Load Diff

@ -1,6 +1,6 @@
{ {
"_class_name": "AllegroAutoencoderKL3D", "_class_name": "AllegroAutoencoderKL3D",
"_diffusers_version": "0.30.3", "_diffusers_version": "0.28.0",
"act_fn": "silu", "act_fn": "silu",
"block_out_channels": [ "block_out_channels": [
128, 128,

@ -1,978 +0,0 @@
import math
from dataclasses import dataclass
import os
from typing import Dict, Optional, Tuple, Union
from einops import rearrange
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.modeling_outputs import AutoencoderKLOutput
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
from diffusers.models.attention_processor import Attention
from diffusers.models.resnet import ResnetBlock2D
from diffusers.models.upsampling import Upsample2D
from diffusers.models.downsampling import Downsample2D
from diffusers.models.attention_processor import SpatialNorm
class TemporalConvBlock(nn.Module):
"""
Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from:
https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016
"""
def __init__(self, in_dim, out_dim=None, dropout=0.0, up_sample=False, down_sample=False, spa_stride=1):
super().__init__()
out_dim = out_dim or in_dim
self.in_dim = in_dim
self.out_dim = out_dim
spa_pad = int((spa_stride-1)*0.5)
temp_pad = 0
self.temp_pad = temp_pad
if down_sample:
self.conv1 = nn.Sequential(
nn.GroupNorm(32, in_dim),
nn.SiLU(),
nn.Conv3d(in_dim, out_dim, (2, spa_stride, spa_stride), stride=(2,1,1), padding=(0, spa_pad, spa_pad))
)
elif up_sample:
self.conv1 = nn.Sequential(
nn.GroupNorm(32, in_dim),
nn.SiLU(),
nn.Conv3d(in_dim, out_dim*2, (1, spa_stride, spa_stride), padding=(0, spa_pad, spa_pad))
)
else:
self.conv1 = nn.Sequential(
nn.GroupNorm(32, in_dim),
nn.SiLU(),
nn.Conv3d(in_dim, out_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad))
)
self.conv2 = nn.Sequential(
nn.GroupNorm(32, out_dim),
nn.SiLU(),
nn.Dropout(dropout),
nn.Conv3d(out_dim, in_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad)),
)
self.conv3 = nn.Sequential(
nn.GroupNorm(32, out_dim),
nn.SiLU(),
nn.Dropout(dropout),
nn.Conv3d(out_dim, in_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad)),
)
self.conv4 = nn.Sequential(
nn.GroupNorm(32, out_dim),
nn.SiLU(),
nn.Conv3d(out_dim, in_dim, (3, spa_stride, spa_stride), padding=(temp_pad, spa_pad, spa_pad)),
)
# zero out the last layer params,so the conv block is identity
nn.init.zeros_(self.conv4[-1].weight)
nn.init.zeros_(self.conv4[-1].bias)
self.down_sample = down_sample
self.up_sample = up_sample
def forward(self, hidden_states):
identity = hidden_states
if self.down_sample:
identity = identity[:,:,::2]
elif self.up_sample:
hidden_states_new = torch.cat((hidden_states,hidden_states),dim=2)
hidden_states_new[:, :, 0::2] = hidden_states
hidden_states_new[:, :, 1::2] = hidden_states
identity = hidden_states_new
del hidden_states_new
if self.down_sample or self.up_sample:
hidden_states = self.conv1(hidden_states)
else:
hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2)
hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2)
hidden_states = self.conv1(hidden_states)
if self.up_sample:
hidden_states = rearrange(hidden_states, 'b (d c) f h w -> b c (f d) h w', d=2)
hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2)
hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2)
hidden_states = self.conv2(hidden_states)
hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2)
hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2)
hidden_states = self.conv3(hidden_states)
hidden_states = torch.cat((hidden_states[:,:,0:1], hidden_states), dim=2)
hidden_states = torch.cat((hidden_states,hidden_states[:,:,-1:]), dim=2)
hidden_states = self.conv4(hidden_states)
hidden_states = identity + hidden_states
return hidden_states
class DownEncoderBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor=1.0,
add_downsample=True,
add_temp_downsample=False,
downsample_padding=1,
):
super().__init__()
resnets = []
temp_convs = []
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=None,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvBlock(
out_channels,
out_channels,
dropout=0.1,
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
if add_temp_downsample:
self.temp_convs_down = TemporalConvBlock(
out_channels,
out_channels,
dropout=0.1,
down_sample=True,
spa_stride=3
)
self.add_temp_downsample = add_temp_downsample
if add_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
)
]
)
else:
self.downsamplers = None
def _set_partial_grad(self):
for temp_conv in self.temp_convs:
temp_conv.requires_grad_(True)
if self.downsamplers:
for down_layer in self.downsamplers:
down_layer.requires_grad_(True)
def forward(self, hidden_states):
bz = hidden_states.shape[0]
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
hidden_states = resnet(hidden_states, temb=None)
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
hidden_states = temp_conv(hidden_states)
if self.add_temp_downsample:
hidden_states = self.temp_convs_down(hidden_states)
if self.downsamplers is not None:
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
for upsampler in self.downsamplers:
hidden_states = upsampler(hidden_states)
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
return hidden_states
class UpDecoderBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default", # default, spatial
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor=1.0,
add_upsample=True,
add_temp_upsample=False,
temb_channels=None,
):
super().__init__()
self.add_upsample = add_upsample
resnets = []
temp_convs = []
for i in range(num_layers):
input_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=input_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvBlock(
out_channels,
out_channels,
dropout=0.1,
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
self.add_temp_upsample = add_temp_upsample
if add_temp_upsample:
self.temp_conv_up = TemporalConvBlock(
out_channels,
out_channels,
dropout=0.1,
up_sample=True,
spa_stride=3
)
if self.add_upsample:
# self.upsamplers = nn.ModuleList([PSUpsample2D(out_channels, use_conv=True, use_pixel_shuffle=True, out_channels=out_channels)])
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
def _set_partial_grad(self):
for temp_conv in self.temp_convs:
temp_conv.requires_grad_(True)
if self.add_upsample:
self.upsamplers.requires_grad_(True)
def forward(self, hidden_states):
bz = hidden_states.shape[0]
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
hidden_states = resnet(hidden_states, temb=None)
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
hidden_states = temp_conv(hidden_states)
if self.add_temp_upsample:
hidden_states = self.temp_conv_up(hidden_states)
if self.upsamplers is not None:
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
return hidden_states
class UNetMidBlock3DConv(nn.Module):
def __init__(
self,
in_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default", # default, spatial
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
add_attention: bool = True,
attention_head_dim=1,
output_scale_factor=1.0,
):
super().__init__()
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
self.add_attention = add_attention
# there is always at least one resnet
resnets = [
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
]
temp_convs = [
TemporalConvBlock(
in_channels,
in_channels,
dropout=0.1,
)
]
attentions = []
if attention_head_dim is None:
attention_head_dim = in_channels
for _ in range(num_layers):
if self.add_attention:
attentions.append(
Attention(
in_channels,
heads=in_channels // attention_head_dim,
dim_head=attention_head_dim,
rescale_output_factor=output_scale_factor,
eps=resnet_eps,
norm_num_groups=resnet_groups if resnet_time_scale_shift == "default" else None,
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
residual_connection=True,
bias=True,
upcast_softmax=True,
_from_deprecated_attn_block=True,
)
)
else:
attentions.append(None)
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
TemporalConvBlock(
in_channels,
in_channels,
dropout=0.1,
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
self.attentions = nn.ModuleList(attentions)
def _set_partial_grad(self):
for temp_conv in self.temp_convs:
temp_conv.requires_grad_(True)
def forward(
self,
hidden_states,
):
bz = hidden_states.shape[0]
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
hidden_states = self.resnets[0](hidden_states, temb=None)
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
hidden_states = self.temp_convs[0](hidden_states)
hidden_states = rearrange(hidden_states, 'b c n h w -> (b n) c h w')
for attn, resnet, temp_conv in zip(
self.attentions, self.resnets[1:], self.temp_convs[1:]
):
hidden_states = attn(hidden_states)
hidden_states = resnet(hidden_states, temb=None)
hidden_states = rearrange(hidden_states, '(b n) c h w -> b c n h w', b=bz)
hidden_states = temp_conv(hidden_states)
return hidden_states
class Encoder3D(nn.Module):
def __init__(
self,
in_channels=3,
out_channels=3,
num_blocks=4,
blocks_temp_li=[False, False, False, False],
block_out_channels=(64,),
layers_per_block=2,
norm_num_groups=32,
act_fn="silu",
double_z=True,
):
super().__init__()
self.layers_per_block = layers_per_block
self.blocks_temp_li = blocks_temp_li
self.conv_in = nn.Conv2d(
in_channels,
block_out_channels[0],
kernel_size=3,
stride=1,
padding=1,
)
self.temp_conv_in = nn.Conv3d(
block_out_channels[0],
block_out_channels[0],
(3,1,1),
padding = (1, 0, 0)
)
self.mid_block = None
self.down_blocks = nn.ModuleList([])
# down
output_channel = block_out_channels[0]
for i in range(num_blocks):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = DownEncoderBlock3D(
num_layers=self.layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
add_downsample=not is_final_block,
add_temp_downsample=blocks_temp_li[i],
resnet_eps=1e-6,
downsample_padding=0,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
)
self.down_blocks.append(down_block)
# mid
self.mid_block = UNetMidBlock3DConv(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default",
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=None,
)
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
conv_out_channels = 2 * out_channels if double_z else out_channels
self.temp_conv_out = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3,1,1), padding = (1, 0, 0))
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
nn.init.zeros_(self.temp_conv_in.weight)
nn.init.zeros_(self.temp_conv_in.bias)
nn.init.zeros_(self.temp_conv_out.weight)
nn.init.zeros_(self.temp_conv_out.bias)
self.gradient_checkpointing = False
def forward(self, x):
'''
x: [b, c, (tb f), h, w]
'''
bz = x.shape[0]
sample = rearrange(x, 'b c n h w -> (b n) c h w')
sample = self.conv_in(sample)
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
temp_sample = sample
sample = self.temp_conv_in(sample)
sample = sample+temp_sample
# down
for b_id, down_block in enumerate(self.down_blocks):
sample = down_block(sample)
# middle
sample = self.mid_block(sample)
# post-process
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
temp_sample = sample
sample = self.temp_conv_out(sample)
sample = sample+temp_sample
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
sample = self.conv_out(sample)
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
return sample
class Decoder3D(nn.Module):
def __init__(
self,
in_channels=4,
out_channels=3,
num_blocks=4,
blocks_temp_li=[False, False, False, False],
block_out_channels=(64,),
layers_per_block=2,
norm_num_groups=32,
act_fn="silu",
norm_type="group", # group, spatial
):
super().__init__()
self.layers_per_block = layers_per_block
self.blocks_temp_li = blocks_temp_li
self.conv_in = nn.Conv2d(
in_channels,
block_out_channels[-1],
kernel_size=3,
stride=1,
padding=1,
)
self.temp_conv_in = nn.Conv3d(
block_out_channels[-1],
block_out_channels[-1],
(3,1,1),
padding = (1, 0, 0)
)
self.mid_block = None
self.up_blocks = nn.ModuleList([])
temb_channels = in_channels if norm_type == "spatial" else None
# mid
self.mid_block = UNetMidBlock3DConv(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=temb_channels,
)
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i in range(num_blocks):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
up_block = UpDecoderBlock3D(
num_layers=self.layers_per_block + 1,
in_channels=prev_output_channel,
out_channels=output_channel,
add_upsample=not is_final_block,
add_temp_upsample=blocks_temp_li[i],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
temb_channels=temb_channels,
resnet_time_scale_shift=norm_type,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
if norm_type == "spatial":
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
else:
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
self.temp_conv_out = nn.Conv3d(block_out_channels[0], block_out_channels[0], (3,1,1), padding = (1, 0, 0))
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
nn.init.zeros_(self.temp_conv_in.weight)
nn.init.zeros_(self.temp_conv_in.bias)
nn.init.zeros_(self.temp_conv_out.weight)
nn.init.zeros_(self.temp_conv_out.bias)
self.gradient_checkpointing = False
def forward(self, z):
bz = z.shape[0]
sample = rearrange(z, 'b c n h w -> (b n) c h w')
sample = self.conv_in(sample)
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
temp_sample = sample
sample = self.temp_conv_in(sample)
sample = sample+temp_sample
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
# middle
sample = self.mid_block(sample)
sample = sample.to(upscale_dtype)
# up
for b_id, up_block in enumerate(self.up_blocks):
sample = up_block(sample)
# post-process
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
temp_sample = sample
sample = self.temp_conv_out(sample)
sample = sample+temp_sample
sample = rearrange(sample, 'b c n h w -> (b n) c h w')
sample = self.conv_out(sample)
sample = rearrange(sample, '(b n) c h w -> b c n h w', b=bz)
return sample
class AllegroAutoencoderKL3D(ModelMixin, ConfigMixin):
r"""
A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of block output channels.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
sample_size (`int`, *optional*, defaults to `256`): Spatial Tiling Size.
tile_overlap (`tuple`, *optional*, defaults to `(120, 80`): Spatial overlapping size while tiling (height, width)
chunk_len (`int`, *optional*, defaults to `24`): Temporal Tiling Size.
t_over (`int`, *optional*, defaults to `8`): Temporal overlapping size while tiling
scaling_factor (`float`, *optional*, defaults to 0.13235):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
force_upcast (`bool`, *optional*, default to `True`):
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
can be fine-tuned / trained to a lower range without loosing too much precision in which case
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
blocks_tempdown_li (`List`, *optional*, defaults to `[True, True, False, False]`): Each item indicates whether each TemporalBlock in the Encoder performs temporal downsampling.
blocks_tempup_li (`List`, *optional*, defaults to `[False, True, True, False]`): Each item indicates whether each TemporalBlock in the Decoder performs temporal upsampling.
load_mode (`str`, *optional*, defaults to `full`): Load mode for the model. Can be one of `full`, `encoder_only`, `decoder_only`. which corresponds to loading the full model state dicts, only the encoder state dicts, or only the decoder state dicts.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_num: int = 4,
up_block_num: int = 4,
block_out_channels: Tuple[int] = (128,256,512,512),
layers_per_block: int = 2,
act_fn: str = "silu",
latent_channels: int = 4,
norm_num_groups: int = 32,
sample_size: int = 320,
tile_overlap: tuple = (120, 80),
force_upcast: bool = True,
chunk_len: int = 24,
t_over: int = 8,
scale_factor: float = 0.13235,
blocks_tempdown_li=[True, True, False, False],
blocks_tempup_li=[False, True, True, False],
load_mode = 'full',
):
super().__init__()
self.blocks_tempdown_li = blocks_tempdown_li
self.blocks_tempup_li = blocks_tempup_li
# pass init params to Encoder
self.load_mode = load_mode
if load_mode in ['full', 'encoder_only']:
self.encoder = Encoder3D(
in_channels=in_channels,
out_channels=latent_channels,
num_blocks=down_block_num,
blocks_temp_li=blocks_tempdown_li,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
double_z=True,
)
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
if load_mode in ['full', 'decoder_only']:
# pass init params to Decoder
self.decoder = Decoder3D(
in_channels=latent_channels,
out_channels=out_channels,
num_blocks=up_block_num,
blocks_temp_li=blocks_tempup_li,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
act_fn=act_fn,
)
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)
# only relevant if vae tiling is enabled
sample_size = (
sample_size[0]
if isinstance(sample_size, (list, tuple))
else sample_size
)
self.tile_overlap = tile_overlap
self.vae_scale_factor=[4, 8, 8]
self.scale_factor = scale_factor
self.sample_size = sample_size
self.chunk_len = chunk_len
self.t_over = t_over
self.latent_chunk_len = self.chunk_len//4
self.latent_t_over = self.t_over//4
self.kernel = (self.chunk_len, self.sample_size, self.sample_size) #(24, 256, 256)
self.stride = (self.chunk_len - self.t_over, self.sample_size-self.tile_overlap[0], self.sample_size-self.tile_overlap[1]) # (16, 112, 192)
def encode(self, input_imgs: torch.Tensor, return_dict: bool = True, local_batch_size=1) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
KERNEL = self.kernel
STRIDE = self.stride
LOCAL_BS = local_batch_size
OUT_C = 8
B, C, N, H, W = input_imgs.shape
out_n = math.floor((N - KERNEL[0]) / STRIDE[0]) + 1
out_h = math.floor((H - KERNEL[1]) / STRIDE[1]) + 1
out_w = math.floor((W - KERNEL[2]) / STRIDE[2]) + 1
## cut video into overlapped small cubes and batch forward
num = 0
out_latent = torch.zeros((out_n*out_h*out_w, OUT_C, KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8), device=input_imgs.device, dtype=input_imgs.dtype)
vae_batch_input = torch.zeros((LOCAL_BS, C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_imgs.device, dtype=input_imgs.dtype)
for i in range(out_n):
for j in range(out_h):
for k in range(out_w):
n_start, n_end = i * STRIDE[0], i * STRIDE[0] + KERNEL[0]
h_start, h_end = j * STRIDE[1], j * STRIDE[1] + KERNEL[1]
w_start, w_end = k * STRIDE[2], k * STRIDE[2] + KERNEL[2]
video_cube = input_imgs[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
vae_batch_input[num%LOCAL_BS] = video_cube
if num%LOCAL_BS == LOCAL_BS-1 or num == out_n*out_h*out_w-1:
latent = self.encoder(vae_batch_input)
if num == out_n*out_h*out_w-1 and num%LOCAL_BS != LOCAL_BS-1:
out_latent[num-num%LOCAL_BS:] = latent[:num%LOCAL_BS+1]
else:
out_latent[num-LOCAL_BS+1:num+1] = latent
vae_batch_input = torch.zeros((LOCAL_BS, C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_imgs.device, dtype=input_imgs.dtype)
num+=1
## flatten the batched out latent to videos and supress the overlapped parts
B, C, N, H, W = input_imgs.shape
out_video_cube = torch.zeros((B, OUT_C, N//4, H//8, W//8), device=input_imgs.device, dtype=input_imgs.dtype)
OUT_KERNEL = KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8
OUT_STRIDE = STRIDE[0]//4, STRIDE[1]//8, STRIDE[2]//8
OVERLAP = OUT_KERNEL[0]-OUT_STRIDE[0], OUT_KERNEL[1]-OUT_STRIDE[1], OUT_KERNEL[2]-OUT_STRIDE[2]
for i in range(out_n):
n_start, n_end = i * OUT_STRIDE[0], i * OUT_STRIDE[0] + OUT_KERNEL[0]
for j in range(out_h):
h_start, h_end = j * OUT_STRIDE[1], j * OUT_STRIDE[1] + OUT_KERNEL[1]
for k in range(out_w):
w_start, w_end = k * OUT_STRIDE[2], k * OUT_STRIDE[2] + OUT_KERNEL[2]
latent_mean_blend = prepare_for_blend((i, out_n, OVERLAP[0]), (j, out_h, OVERLAP[1]), (k, out_w, OVERLAP[2]), out_latent[i*out_h*out_w+j*out_w+k].unsqueeze(0))
out_video_cube[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += latent_mean_blend
## final conv
out_video_cube = rearrange(out_video_cube, 'b c n h w -> (b n) c h w')
out_video_cube = self.quant_conv(out_video_cube)
out_video_cube = rearrange(out_video_cube, '(b n) c h w -> b c n h w', b=B)
posterior = DiagonalGaussianDistribution(out_video_cube)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def decode(self, input_latents: torch.Tensor, return_dict: bool = True, local_batch_size=1) -> Union[DecoderOutput, torch.Tensor]:
KERNEL = self.kernel
STRIDE = self.stride
LOCAL_BS = local_batch_size
OUT_C = 3
IN_KERNEL = KERNEL[0]//4, KERNEL[1]//8, KERNEL[2]//8
IN_STRIDE = STRIDE[0]//4, STRIDE[1]//8, STRIDE[2]//8
B, C, N, H, W = input_latents.shape
## post quant conv (a mapping)
input_latents = rearrange(input_latents, 'b c n h w -> (b n) c h w')
input_latents = self.post_quant_conv(input_latents)
input_latents = rearrange(input_latents, '(b n) c h w -> b c n h w', b=B)
## out tensor shape
out_n = math.floor((N - IN_KERNEL[0]) / IN_STRIDE[0]) + 1
out_h = math.floor((H - IN_KERNEL[1]) / IN_STRIDE[1]) + 1
out_w = math.floor((W - IN_KERNEL[2]) / IN_STRIDE[2]) + 1
## cut latent into overlapped small cubes and batch forward
num = 0
decoded_cube = torch.zeros((out_n*out_h*out_w, OUT_C, KERNEL[0], KERNEL[1], KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype)
vae_batch_input = torch.zeros((LOCAL_BS, C, IN_KERNEL[0], IN_KERNEL[1], IN_KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype)
for i in range(out_n):
for j in range(out_h):
for k in range(out_w):
n_start, n_end = i * IN_STRIDE[0], i * IN_STRIDE[0] + IN_KERNEL[0]
h_start, h_end = j * IN_STRIDE[1], j * IN_STRIDE[1] + IN_KERNEL[1]
w_start, w_end = k * IN_STRIDE[2], k * IN_STRIDE[2] + IN_KERNEL[2]
latent_cube = input_latents[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
vae_batch_input[num%LOCAL_BS] = latent_cube
if num%LOCAL_BS == LOCAL_BS-1 or num == out_n*out_h*out_w-1:
latent = self.decoder(vae_batch_input)
if num == out_n*out_h*out_w-1 and num%LOCAL_BS != LOCAL_BS-1:
decoded_cube[num-num%LOCAL_BS:] = latent[:num%LOCAL_BS+1]
else:
decoded_cube[num-LOCAL_BS+1:num+1] = latent
vae_batch_input = torch.zeros((LOCAL_BS, C, IN_KERNEL[0], IN_KERNEL[1], IN_KERNEL[2]), device=input_latents.device, dtype=input_latents.dtype)
num+=1
B, C, N, H, W = input_latents.shape
out_video = torch.zeros((B, OUT_C, N*4, H*8, W*8), device=input_latents.device, dtype=input_latents.dtype)
OVERLAP = KERNEL[0]-STRIDE[0], KERNEL[1]-STRIDE[1], KERNEL[2]-STRIDE[2]
for i in range(out_n):
n_start, n_end = i * STRIDE[0], i * STRIDE[0] + KERNEL[0]
for j in range(out_h):
h_start, h_end = j * STRIDE[1], j * STRIDE[1] + KERNEL[1]
for k in range(out_w):
w_start, w_end = k * STRIDE[2], k * STRIDE[2] + KERNEL[2]
out_video_blend = prepare_for_blend((i, out_n, OVERLAP[0]), (j, out_h, OVERLAP[1]), (k, out_w, OVERLAP[2]), decoded_cube[i*out_h*out_w+j*out_w+k].unsqueeze(0))
out_video[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += out_video_blend
out_video = rearrange(out_video, 'b c t h w -> b t c h w').contiguous()
decoded = out_video
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def forward(
self,
sample: torch.Tensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
encoder_local_batch_size: int = 2,
decoder_local_batch_size: int = 2,
) -> Union[DecoderOutput, torch.Tensor]:
r"""
Args:
sample (`torch.Tensor`): Input sample.
sample_posterior (`bool`, *optional*, defaults to `False`):
Whether to sample from the posterior.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
generator (`torch.Generator`, *optional*):
PyTorch random number generator.
encoder_local_batch_size (`int`, *optional*, defaults to 2):
Local batch size for the encoder's batch inference.
decoder_local_batch_size (`int`, *optional*, defaults to 2):
Local batch size for the decoder's batch inference.
"""
x = sample
posterior = self.encode(x, local_batch_size=encoder_local_batch_size).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z, local_batch_size=decoder_local_batch_size).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
kwargs["torch_type"] = torch.float32
return super().from_pretrained(pretrained_model_name_or_path, **kwargs)
def prepare_for_blend(n_param, h_param, w_param, x):
n, n_max, overlap_n = n_param
h, h_max, overlap_h = h_param
w, w_max, overlap_w = w_param
if overlap_n > 0:
if n > 0: # the head overlap part decays from 0 to 1
x[:,:,0:overlap_n,:,:] = x[:,:,0:overlap_n,:,:] * (torch.arange(0, overlap_n).float().to(x.device) / overlap_n).reshape(overlap_n,1,1)
if n < n_max-1: # the tail overlap part decays from 1 to 0
x[:,:,-overlap_n:,:,:] = x[:,:,-overlap_n:,:,:] * (1 - torch.arange(0, overlap_n).float().to(x.device) / overlap_n).reshape(overlap_n,1,1)
if h > 0:
x[:,:,:,0:overlap_h,:] = x[:,:,:,0:overlap_h,:] * (torch.arange(0, overlap_h).float().to(x.device) / overlap_h).reshape(overlap_h,1)
if h < h_max-1:
x[:,:,:,-overlap_h:,:] = x[:,:,:,-overlap_h:,:] * (1 - torch.arange(0, overlap_h).float().to(x.device) / overlap_h).reshape(overlap_h,1)
if w > 0:
x[:,:,:,:,0:overlap_w] = x[:,:,:,:,0:overlap_w] * (torch.arange(0, overlap_w).float().to(x.device) / overlap_w)
if w < w_max-1:
x[:,:,:,:,-overlap_w:] = x[:,:,:,:,-overlap_w:] * (1 - torch.arange(0, overlap_w).float().to(x.device) / overlap_w)
return x