Merge branch 'main' of hf.co:rhymes-ai/Allegro
This commit is contained in:
commit
aabda431f0
20
README.md
20
README.md
@ -17,7 +17,10 @@ library_name: diffusers
|
||||
|
||||
|
||||
# Key Feature
|
||||
Allegro is capable of producing high-quality, 6-second videos at 30 frames per second and 720p resolution from simple text prompts.
|
||||
- **High-Quality Output**: Generate detailed 6-second videos at 15 FPS with 720x1280 resolution, which can be interpolated to 30 FPS with EMA-VFI.
|
||||
- **Small and Efficient**: Features a 175M parameter VAE and a 2.8B parameter DiT model. Supports multiple precisions (FP32, BF16, FP16) and uses 9.3 GB of GPU memory in BF16 mode with CPU offloading.
|
||||
- **Extensive Context Length**: Handles up to 79.2k tokens, providing rich and comprehensive text-to-video generation capabilities.
|
||||
- **Versatile Content Creation**: Capable of generating a wide range of content, from close-ups of humans and animals to diverse dynamic scenes.
|
||||
|
||||
|
||||
# Model info
|
||||
@ -29,7 +32,7 @@ Allegro is capable of producing high-quality, 6-second videos at 30 frames per s
|
||||
</tr>
|
||||
<tr>
|
||||
<th>Description</th>
|
||||
<td>Text-to-Video Diffusion Transformer</td>
|
||||
<td>Text-to-Video Generation Model</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<th>Download</th>
|
||||
@ -76,17 +79,14 @@ Allegro is capable of producing high-quality, 6-second videos at 30 frames per s
|
||||
You can quickly get started with Allegro using the Hugging Face Diffusers library.
|
||||
For more tutorials, see Allegro GitHub (link-tbd).
|
||||
|
||||
Install necessary requirements:
|
||||
```python
|
||||
pip install diffusers transformers imageio
|
||||
```
|
||||
Inference on single gpu:
|
||||
1. Install necessary requirements. Please refer to [requirements.txt](https://github.com/rhymes-ai) on Allegro GitHub.
|
||||
2. Perform inference on a single GPU.
|
||||
```python
|
||||
from diffusers import DiffusionPipeline
|
||||
import torch
|
||||
|
||||
allegro_pipeline = DiffusionPipeline.from_pretrained(
|
||||
"rhythms-ai/allegro", trust_remote_code=True, torch_dtype=torch.bfloat16
|
||||
"rhymes-ai/Allegro", trust_remote_code=True, torch_dtype=torch.bfloat16
|
||||
).to("cuda")
|
||||
|
||||
allegro_pipeline.vae = allegro_pipeline.vae.to(torch.float32)
|
||||
@ -121,8 +121,10 @@ out_video = allegro_pipeline(
|
||||
).video[0]
|
||||
|
||||
imageio.mimwrite("test_video.mp4", out_video, fps=15, quality=8)
|
||||
|
||||
```
|
||||
Tip:
|
||||
- It is highly recommended to use a video frame interpolation model (such as EMA-VFI) to enhance the result to 30 FPS.
|
||||
- For more tutorials, see [Allegro GitHub](https://github.com/rhymes-ai).
|
||||
|
||||
# License
|
||||
This repo is released under the Apache 2.0 License.
|
||||
|
Loading…
x
Reference in New Issue
Block a user