Update app.py
All checks were successful
society-ai-hub-container-cache Actions Demo / build (push) Successful in 26s

This commit is contained in:
Hezi Aharon 2024-12-13 17:06:09 +00:00
parent d6982b0d9c
commit a828c1f0cc

181
app.py

@ -4,115 +4,108 @@ import base64
from PIL import Image
from io import BytesIO
import numpy as np
import random
import os
API_URL = 'https://hub.societyai.com/models/flux-1-schnell/infer'
API_TOKEN = os.environ.get("SAI_API_TOKEN", "")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
with gr.Blocks(css="footer {visibility: hidden}") as demo:
gr.Markdown("## FLUX.1-schnell Image Generation")
with gr.Row():
prompt = gr.Textbox(label="Prompt", lines=2, placeholder="Enter your prompt here")
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
width = gr.Number(value=512, label="Width", maximum=1920)
height = gr.Number(value=512, label="Height", maximum=1080)
# Dropdown menus
avatar = gr.Dropdown(label="Avatar", choices=["Wizard", "Cyborg", "Clown", "Samurai"], value="Wizard")
hair = gr.Dropdown(label="Hair", choices=["Long", "Short", "Mohawk", "Ponytail"], value="Long")
theme = gr.Dropdown(label="Theme", choices=["Cyberpunk", "Fantasy", "Anime", "Dreamscape"], value="Cyberpunk")
color = gr.Dropdown(label="Color", choices=["Pink", "Green", "Blue", "Red"], value="Pink")
with gr.Row():
num_steps = gr.Number(value=4, label="Number of Steps (1-4)", minimum=1, maximum=4)
guidance_scale = gr.Slider(0.0, 10.0, 0.0, value=7.5, label="Guidance Scale")
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# Fixed parameters
width = 256
height = 256
num_steps = 4
guidance_scale = 7.5
seed = 123
randomize_seed = False
generate_button = gr.Button("Generate Image")
output_image = gr.Image(type="numpy", label="Generated Image")
message = gr.Textbox(label="Status", interactive=False)
def generate_image(prompt, width, height, num_steps, guidance_scale, seed, randomize_seed):
try:
# Validation: Ensure width and height are divisible by 16
if width % 8 != 0 or height % 8 != 0:
return None, "Error: Both width and height must be divisible by 8."
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Prepare the data payload
inputs = [
def generate_image(avatar, hair, theme, color):
# Construct the prompt
prompt = f"image of a {avatar} with {hair} hair, in a {theme} style with {color} as the main color"
# Validation: Ensure width and height are divisible by 8
if width % 8 != 0 or height % 8 != 0:
return None, "Error: Both width and height must be divisible by 8."
# Prepare the data payload
inputs = [
{
"name": "PROMPT",
"shape": [1],
"datatype": "BYTES",
"data": [prompt]
},
{
"name": "INIT_IMAGE",
"shape": [1],
"datatype": "BYTES",
"data": [""] # not supported
},
{
"name": "WIDTH",
"shape": [1],
"datatype": "INT32",
"data": [int(width)]
},
{
"name": "HEIGHT",
"shape": [1],
"datatype": "INT32",
"data": [int(height)]
},
{
"name": "NUM_STEPS",
"shape": [1],
"datatype": "INT32",
"data": [int(num_steps)]
},
{
"name": "GUIDANCE_SCALE",
"shape": [1],
"datatype": "FP32",
"data": [float(guidance_scale)]
},
{
"name": "SEED",
"shape": [1],
"datatype": "INT32",
"data": [int(seed)]
},
{
"name": "IMAGE_STRENGTH",
"shape": [1],
"datatype": "FP32",
"data": [0.0] # not supported
}
]
payload = {
"inputs": inputs,
"outputs": [
{
"name": "PROMPT",
"shape": [1],
"datatype": "BYTES",
"data": [prompt]
},
{
"name": "INIT_IMAGE",
"shape": [1],
"datatype": "BYTES",
"data": [""] # not supported
},
{
"name": "WIDTH",
"shape": [1],
"datatype": "INT32",
"data": [int(width)]
},
{
"name": "HEIGHT",
"shape": [1],
"datatype": "INT32",
"data": [int(height)]
},
{
"name": "NUM_STEPS",
"shape": [1],
"datatype": "INT32",
"data": [int(num_steps)]
},
{
"name": "GUIDANCE_SCALE",
"shape": [1],
"datatype": "FP32",
"data": [float(guidance_scale)]
},
{
"name": "SEED",
"shape": [1],
"datatype": "INT32",
"data": [int(seed)]
},
{
"name": "IMAGE_STRENGTH",
"shape": [1],
"datatype": "FP32",
"data": [0.0] # not supported
"name": "IMAGE"
}
]
}
payload = {
"inputs": inputs,
"outputs": [
{
"name": "IMAGE"
}
]
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_TOKEN}"
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_TOKEN}"
}
try:
# Send the POST request
response = requests.post(API_URL, headers=headers, json=payload)
@ -125,17 +118,17 @@ with gr.Blocks(css="footer {visibility: hidden}") as demo:
# Convert to numpy array
image = Image.open(BytesIO(image_data))
image_np = np.array(image)
return image_np, "Image generated successfully.", seed
return image_np, "Image generated successfully."
else:
# Handle error
return None, f"Error: {response.status_code} - {response.text}", seed
return None, f"Error: {response.status_code} - {response.text}"
except Exception as e:
return None, f"Error: {str(e)}", seed
return None, f"Error: {str(e)}"
generate_button.click(
generate_image,
inputs=[prompt, width, height, num_steps, guidance_scale, seed, randomize_seed],
outputs=[output_image, message, seed]
inputs=[avatar, hair, theme, color],
outputs=[output_image, message]
)
if __name__ == "__main__":