avatar-generator/app.py
Hezi Aharon cb93ffe7ec
All checks were successful
society-ai-hub-container-cache Actions Demo / build (push) Successful in 26s
Update app.py
2024-12-13 17:17:08 +00:00

143 lines
4.5 KiB
Python

import gradio as gr
import requests
import base64
from PIL import Image
from io import BytesIO
import numpy as np
import os
import random
API_URL = 'https://hub.societyai.com/models/flux-1-schnell/infer'
API_TOKEN = os.environ.get("SAI_API_TOKEN", "")
MAX_SEED = np.iinfo(np.int32).max
with gr.Blocks(css="footer {visibility: hidden}") as demo:
gr.Markdown("## FLUX.1-schnell Image Generation")
# Dropdown menus
gender = gr.Dropdown(label="Gender", choices=["Male", "Female"], value="Male")
avatar = gr.Dropdown(label="Avatar", choices=["Wizard", "Cyborg", "Clown", "Samurai"], value="Wizard")
hair = gr.Dropdown(label="Hair", choices=["Long", "Short", "Mohawk", "Ponytail"], value="Long")
theme = gr.Dropdown(label="Theme", choices=["Cyberpunk", "Fantasy", "Anime", "Dreamscape"], value="Cyberpunk")
color = gr.Dropdown(label="Color", choices=["Pink", "Green", "Blue", "Red"], value="Pink")
# Checkbox for randomize seed
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
# Adjusted parameters
width = 512
height = 512
num_steps = 4
guidance_scale = 7.5
fixed_seed = 123
generate_button = gr.Button("Generate Image")
output_image = gr.Image(type="numpy", label="Generated Image")
message = gr.Textbox(label="Status", interactive=False)
def generate_image(gender, avatar, hair, theme, color, randomize_seed):
# Construct the prompt
prompt = f"image of a {gender} {avatar} with {hair} hair, in a {theme} style with {color} as the main color"
# Seed logic
seed = random.randint(0, MAX_SEED) if randomize_seed else fixed_seed
# Validation: Ensure width and height are divisible by 8
if width % 8 != 0 or height % 8 != 0:
return None, "Error: Both width and height must be divisible by 8."
# Prepare the data payload
inputs = [
{
"name": "PROMPT",
"shape": [1],
"datatype": "BYTES",
"data": [prompt]
},
{
"name": "INIT_IMAGE",
"shape": [1],
"datatype": "BYTES",
"data": [""] # not supported
},
{
"name": "WIDTH",
"shape": [1],
"datatype": "INT32",
"data": [int(width)]
},
{
"name": "HEIGHT",
"shape": [1],
"datatype": "INT32",
"data": [int(height)]
},
{
"name": "NUM_STEPS",
"shape": [1],
"datatype": "INT32",
"data": [int(num_steps)]
},
{
"name": "GUIDANCE_SCALE",
"shape": [1],
"datatype": "FP32",
"data": [float(guidance_scale)]
},
{
"name": "SEED",
"shape": [1],
"datatype": "INT32",
"data": [int(seed)]
},
{
"name": "IMAGE_STRENGTH",
"shape": [1],
"datatype": "FP32",
"data": [0.0] # not supported
}
]
payload = {
"inputs": inputs,
"outputs": [
{
"name": "IMAGE"
}
]
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_TOKEN}"
}
try:
# Send the POST request
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
# Parse the response
result = response.json()
image_base64 = result['outputs'][0]['data'][0]
# Decode the base64 image data
image_data = base64.b64decode(image_base64)
# Convert to numpy array
image = Image.open(BytesIO(image_data))
image_np = np.array(image)
return image_np, "Image generated successfully."
else:
# Handle error
return None, f"Error: {response.status_code} - {response.text}"
except Exception as e:
return None, f"Error: {str(e)}"
generate_button.click(
generate_image,
inputs=[gender, avatar, hair, theme, color, randomize_seed],
outputs=[output_image, message]
)
if __name__ == "__main__":
demo.launch()