A (very) simple, text only chatbot using Society AI inference endpoint
add app code
This commit is contained in:
parent
c61e2e1afd
commit
c0e83fe75a
23
Dockerfile
Normal file
23
Dockerfile
Normal file
@ -0,0 +1,23 @@
|
|||||||
|
# Stage 1: Build with dependencies
|
||||||
|
FROM python:3.10-bookworm
|
||||||
|
|
||||||
|
# Set the working directory
|
||||||
|
WORKDIR /usr/src/app
|
||||||
|
|
||||||
|
RUN pip install uv==0.4.28
|
||||||
|
# Copy the requirements file and install the dependencies
|
||||||
|
COPY requirements.txt .
|
||||||
|
|
||||||
|
# Install the dependencies
|
||||||
|
RUN export PYTHON=$(which python) && \
|
||||||
|
uv pip install -r ./requirements.txt --python $PYTHON
|
||||||
|
|
||||||
|
# Copy the application code
|
||||||
|
COPY . .
|
||||||
|
|
||||||
|
# Expose the port for the application
|
||||||
|
EXPOSE 7860
|
||||||
|
ENV GRADIO_SERVER_NAME="0.0.0.0"
|
||||||
|
|
||||||
|
# Run the application
|
||||||
|
CMD ["python", "app.py"]
|
@ -1,3 +1 @@
|
|||||||
# simple-chatbot
|
test
|
||||||
|
|
||||||
A (very) simple, text only chatbot using Society AI inference endpoint
|
|
||||||
|
59
app.py
Normal file
59
app.py
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
import gradio as gr
|
||||||
|
from openai import OpenAI
|
||||||
|
|
||||||
|
# Initialize the OpenAI client
|
||||||
|
client = OpenAI(
|
||||||
|
api_key="EMPTY",
|
||||||
|
base_url='https://llama-3-2-3b.societyai.com/openai/v1',
|
||||||
|
)
|
||||||
|
|
||||||
|
# If your endpoint requires an API key, uncomment and set it here
|
||||||
|
# client.api_key = 'your-api-key'
|
||||||
|
|
||||||
|
# Optionally, disable SSL verification if necessary (not recommended for production)
|
||||||
|
# client.verify_ssl_certs = False
|
||||||
|
|
||||||
|
with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
||||||
|
chatbot = gr.Chatbot(type="messages")
|
||||||
|
msg = gr.Textbox()
|
||||||
|
clear = gr.Button("Clear")
|
||||||
|
|
||||||
|
def user(user_message, history: list):
|
||||||
|
"""Appends the user message to the conversation history."""
|
||||||
|
return "", history + [{"role": "user", "content": user_message}]
|
||||||
|
|
||||||
|
def bot(history: list):
|
||||||
|
"""Sends the conversation history to the vLLM API and streams the assistant's response."""
|
||||||
|
# Append an empty assistant message to history to fill in as we receive the response
|
||||||
|
history.append({"role": "assistant", "content": ""})
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Create a chat completion with streaming enabled using the client
|
||||||
|
completion = client.chat.completions.create(
|
||||||
|
model="llama-3.2-3B-instruct", # Adjust the model name if needed
|
||||||
|
messages=history,
|
||||||
|
stream=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# Iterate over the streamed response
|
||||||
|
for chunk in completion:
|
||||||
|
# Access the delta content from the chunk
|
||||||
|
delta = chunk.choices[0].delta
|
||||||
|
content = getattr(delta, 'content', '')
|
||||||
|
if content:
|
||||||
|
# Update the assistant's message with new content
|
||||||
|
history[-1]['content'] += content
|
||||||
|
yield history
|
||||||
|
except Exception as e:
|
||||||
|
# Handle exceptions and display an error message
|
||||||
|
history[-1]['content'] += f"\n[Error]: {str(e)}"
|
||||||
|
yield history
|
||||||
|
|
||||||
|
# Set up the Gradio interface components
|
||||||
|
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
||||||
|
bot, chatbot, chatbot
|
||||||
|
)
|
||||||
|
clear.click(lambda: None, None, chatbot, queue=False)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
demo.launch()
|
1
build.sh
Executable file
1
build.sh
Executable file
@ -0,0 +1 @@
|
|||||||
|
docker buildx build --builder mybuilder --platform linux/amd64 --tag 637423653021.dkr.ecr.us-east-2.amazonaws.com/gradio-apps:test --load .
|
3
requirements.txt
Normal file
3
requirements.txt
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
gradio==5.4.0
|
||||||
|
openai==1.52.2
|
||||||
|
uv==0.4.28
|
Loading…
x
Reference in New Issue
Block a user