import gradio as gr import requests import base64 from PIL import Image from io import BytesIO import numpy as np import random import os API_URL = 'https://hub.societyai.com/models/flux-1-schnell/infer' API_TOKEN = os.environ.get("SAI_API_TOKEN", "") MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 with gr.Blocks() as demo: gr.Markdown("## FLUX.1-schnell Image Generation") with gr.Row(): prompt = gr.Textbox(label="Prompt", lines=2, placeholder="Enter your prompt here") with gr.Accordion("Advanced Settings", open=False): with gr.Row(): width = gr.Number(value=512, label="Width", maximum=1920) height = gr.Number(value=512, label="Height", maximum=1080) with gr.Row(): num_steps = gr.Number(value=4, label="Number of Steps (1-4)", minimum=1, maximum=4) guidance_scale = gr.Slider(0.0, 10.0, 0.0, value=7.5, label="Guidance Scale") with gr.Row(): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) generate_button = gr.Button("Generate Image") output_image = gr.Image(type="numpy", label="Generated Image") message = gr.Textbox(label="Status", interactive=False) def generate_image(prompt, width, height, num_steps, guidance_scale, seed, randomize_seed): try: # Validation: Ensure width and height are divisible by 16 if width % 8 != 0 or height % 8 != 0: return None, "Error: Both width and height must be divisible by 8." if randomize_seed: seed = random.randint(0, MAX_SEED) # Prepare the data payload inputs = [ { "name": "PROMPT", "shape": [1], "datatype": "BYTES", "data": [prompt] }, { "name": "INIT_IMAGE", "shape": [1], "datatype": "BYTES", "data": [""] # not supported }, { "name": "WIDTH", "shape": [1], "datatype": "INT32", "data": [int(width)] }, { "name": "HEIGHT", "shape": [1], "datatype": "INT32", "data": [int(height)] }, { "name": "NUM_STEPS", "shape": [1], "datatype": "INT32", "data": [int(num_steps)] }, { "name": "GUIDANCE_SCALE", "shape": [1], "datatype": "FP32", "data": [float(guidance_scale)] }, { "name": "SEED", "shape": [1], "datatype": "INT32", "data": [int(seed)] }, { "name": "IMAGE_STRENGTH", "shape": [1], "datatype": "FP32", "data": [0.0] # not supported } ] payload = { "inputs": inputs, "outputs": [ { "name": "IMAGE" } ] } headers = { "Content-Type": "application/json", "Authorization": f"Bearer {API_TOKEN}" } # Send the POST request response = requests.post(API_URL, headers=headers, json=payload) if response.status_code == 200: # Parse the response result = response.json() image_base64 = result['outputs'][0]['data'][0] # Decode the base64 image data image_data = base64.b64decode(image_base64) # Convert to numpy array image = Image.open(BytesIO(image_data)) image_np = np.array(image) return image_np, "Image generated successfully.", seed else: # Handle error return None, f"Error: {response.status_code} - {response.text}", seed except Exception as e: return None, f"Error: {str(e)}", seed generate_button.click( generate_image, inputs=[prompt, width, height, num_steps, guidance_scale, seed, randomize_seed], outputs=[output_image, message, seed] ) if __name__ == "__main__": demo.launch()