Move to in-library checkpoint (for real this time) (#107)
- Move to in-library checkpoint (e48d41620636bcb72a4f28b1e09308d1e3d1fdf7)
This commit is contained in:
parent
3d7c5902f1
commit
4a70170c21
23
config.json
23
config.json
@ -2,16 +2,16 @@
|
|||||||
"alibi": false,
|
"alibi": false,
|
||||||
"apply_residual_connection_post_layernorm": false,
|
"apply_residual_connection_post_layernorm": false,
|
||||||
"architectures": [
|
"architectures": [
|
||||||
"RWForCausalLM"
|
"FalconForCausalLM"
|
||||||
],
|
],
|
||||||
"attention_dropout": 0.0,
|
"attention_dropout": 0.0,
|
||||||
"auto_map": {
|
"auto_map": {
|
||||||
"AutoConfig": "configuration_RW.RWConfig",
|
"AutoConfig": "configuration_falcon.FalconConfig",
|
||||||
"AutoModel": "modelling_RW.RWModel",
|
"AutoModel": "modeling_falcon.FalconModel",
|
||||||
"AutoModelForSequenceClassification": "modelling_RW.RWForSequenceClassification",
|
"AutoModelForSequenceClassification": "modeling_falcon.FalconForSequenceClassification",
|
||||||
"AutoModelForTokenClassification": "modelling_RW.RWForTokenClassification",
|
"AutoModelForTokenClassification": "modeling_falcon.FalconForTokenClassification",
|
||||||
"AutoModelForQuestionAnswering": "modelling_RW.RWForQuestionAnswering",
|
"AutoModelForQuestionAnswering": "modeling_falcon.FalconForQuestionAnswering",
|
||||||
"AutoModelForCausalLM": "modelling_RW.RWForCausalLM"
|
"AutoModelForCausalLM": "modeling_falcon.FalconForCausalLM"
|
||||||
},
|
},
|
||||||
"bias": false,
|
"bias": false,
|
||||||
"bos_token_id": 11,
|
"bos_token_id": 11,
|
||||||
@ -20,10 +20,11 @@
|
|||||||
"hidden_size": 8192,
|
"hidden_size": 8192,
|
||||||
"initializer_range": 0.02,
|
"initializer_range": 0.02,
|
||||||
"layer_norm_epsilon": 1e-05,
|
"layer_norm_epsilon": 1e-05,
|
||||||
"model_type": "RefinedWeb",
|
"model_type": "falcon",
|
||||||
"n_head": 128,
|
"new_decoder_architecture": true,
|
||||||
"n_head_kv": 8,
|
"num_attention_heads": 128,
|
||||||
"n_layer": 60,
|
"num_hidden_layers": 60,
|
||||||
|
"num_kv_heads": 8,
|
||||||
"parallel_attn": true,
|
"parallel_attn": true,
|
||||||
"torch_dtype": "bfloat16",
|
"torch_dtype": "bfloat16",
|
||||||
"transformers_version": "4.27.4",
|
"transformers_version": "4.27.4",
|
||||||
|
@ -1,75 +0,0 @@
|
|||||||
# coding=utf-8
|
|
||||||
# Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
""" Bloom configuration"""
|
|
||||||
from transformers.configuration_utils import PretrainedConfig
|
|
||||||
from transformers.utils import logging
|
|
||||||
|
|
||||||
|
|
||||||
logger = logging.get_logger(__name__)
|
|
||||||
|
|
||||||
|
|
||||||
class RWConfig(PretrainedConfig):
|
|
||||||
model_type = "RefinedWeb"
|
|
||||||
keys_to_ignore_at_inference = ["past_key_values"]
|
|
||||||
attribute_map = {
|
|
||||||
"num_hidden_layers": "n_layer",
|
|
||||||
"num_attention_heads": "n_head",
|
|
||||||
}
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
vocab_size=250880,
|
|
||||||
hidden_size=64,
|
|
||||||
n_layer=2,
|
|
||||||
n_head=8,
|
|
||||||
layer_norm_epsilon=1e-5,
|
|
||||||
initializer_range=0.02,
|
|
||||||
use_cache=True,
|
|
||||||
bos_token_id=1,
|
|
||||||
eos_token_id=2,
|
|
||||||
apply_residual_connection_post_layernorm=False,
|
|
||||||
hidden_dropout=0.0,
|
|
||||||
attention_dropout=0.0,
|
|
||||||
n_head_kv=None,
|
|
||||||
alibi=False,
|
|
||||||
**kwargs,
|
|
||||||
):
|
|
||||||
self.vocab_size = vocab_size
|
|
||||||
# Backward compatibility with n_embed kwarg
|
|
||||||
n_embed = kwargs.pop("n_embed", None)
|
|
||||||
self.hidden_size = hidden_size if n_embed is None else n_embed
|
|
||||||
self.n_layer = n_layer
|
|
||||||
self.n_head = n_head
|
|
||||||
self.layer_norm_epsilon = layer_norm_epsilon
|
|
||||||
self.initializer_range = initializer_range
|
|
||||||
self.use_cache = use_cache
|
|
||||||
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
|
||||||
self.hidden_dropout = hidden_dropout
|
|
||||||
self.attention_dropout = attention_dropout
|
|
||||||
|
|
||||||
self.bos_token_id = bos_token_id
|
|
||||||
self.eos_token_id = eos_token_id
|
|
||||||
self.n_head_kv = n_head if n_head_kv is None else n_head_kv
|
|
||||||
self.alibi = alibi
|
|
||||||
|
|
||||||
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def head_dim(self):
|
|
||||||
return self.hidden_size // self.n_head
|
|
||||||
|
|
||||||
@property
|
|
||||||
def rotary(self):
|
|
||||||
return not self.alibi
|
|
152
configuration_falcon.py
Normal file
152
configuration_falcon.py
Normal file
@ -0,0 +1,152 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
""" Falcon configuration"""
|
||||||
|
from transformers.configuration_utils import PretrainedConfig
|
||||||
|
from transformers.utils import logging
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||||
|
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
|
||||||
|
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class FalconConfig(PretrainedConfig):
|
||||||
|
r"""
|
||||||
|
This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
|
||||||
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||||
|
defaults will yield a similar configuration to that of the
|
||||||
|
[tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.
|
||||||
|
|
||||||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||||
|
documentation from [`PretrainedConfig`] for more information.
|
||||||
|
|
||||||
|
|
||||||
|
Args:
|
||||||
|
vocab_size (`int`, *optional*, defaults to 65024):
|
||||||
|
Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
|
||||||
|
`inputs_ids` passed when calling [`FalconModel`]
|
||||||
|
hidden_size (`int`, *optional*, defaults to 4544):
|
||||||
|
Dimension of the hidden representations.
|
||||||
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||||
|
Number of hidden layers in the Transformer decoder.
|
||||||
|
num_attention_heads (`int`, *optional*, defaults to 71):
|
||||||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||||||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||||||
|
Whether the model should return the last key/values attentions (not used by all models). Only relevant if
|
||||||
|
`config.is_decoder=True`.
|
||||||
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
||||||
|
The epsilon used by the layer normalization layers.
|
||||||
|
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
||||||
|
The dropout probability for MLP layers.
|
||||||
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||||
|
The dropout probability for attention layers.
|
||||||
|
num_kv_heads (`int`, *optional*):
|
||||||
|
Number of key-value heads to use per attention layer. If unset, defaults to the same value as
|
||||||
|
`num_attention_heads`.
|
||||||
|
alibi (`bool`, *optional*, defaults to `False`):
|
||||||
|
Whether to use ALiBi positional biases during self-attention.
|
||||||
|
new_decoder_architecture (`bool`, *optional*, defaults to `False`):
|
||||||
|
Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
|
||||||
|
arguments are ignored, as the new decoder always uses parallel attention.
|
||||||
|
multi_query (`bool`, *optional*, defaults to `True`):
|
||||||
|
Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
|
||||||
|
parallel_attn (`bool`, *optional*, defaults to `True`):
|
||||||
|
Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
|
||||||
|
instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
|
||||||
|
bias (`bool`, *optional*, defaults to `False`):
|
||||||
|
Whether to use bias on Linear layers.
|
||||||
|
bos_token_id (`int`, *optional*, defaults to 11):
|
||||||
|
The id of the "beginning-of-sequence" token.
|
||||||
|
eos_token_id (`int`, *optional*, defaults to 11):
|
||||||
|
The id of the "end-of-sequence" token.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
>>> from transformers import FalconModel, FalconConfig
|
||||||
|
|
||||||
|
>>> # Initializing a small (2-layer) Falcon configuration
|
||||||
|
>>> configuration = FalconConfig(num_hidden_layers=2)
|
||||||
|
|
||||||
|
>>> # Initializing a model from the small configuration
|
||||||
|
>>> model = FalconModel(configuration)
|
||||||
|
|
||||||
|
>>> # Accessing the model configuration
|
||||||
|
>>> configuration = model.config
|
||||||
|
```"""
|
||||||
|
model_type = "falcon"
|
||||||
|
keys_to_ignore_at_inference = ["past_key_values"]
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vocab_size=65024,
|
||||||
|
hidden_size=4544,
|
||||||
|
num_hidden_layers=32,
|
||||||
|
num_attention_heads=71,
|
||||||
|
layer_norm_epsilon=1e-5,
|
||||||
|
initializer_range=0.02,
|
||||||
|
use_cache=True,
|
||||||
|
hidden_dropout=0.0,
|
||||||
|
attention_dropout=0.0,
|
||||||
|
num_kv_heads=None,
|
||||||
|
alibi=False,
|
||||||
|
new_decoder_architecture=False,
|
||||||
|
multi_query=True,
|
||||||
|
parallel_attn=True,
|
||||||
|
bias=False,
|
||||||
|
bos_token_id=11,
|
||||||
|
eos_token_id=11,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
logger.warning_once(
|
||||||
|
"\nWARNING: You are currently loading Falcon using legacy code contained in the model repository. Falcon has now been fully ported into the Hugging Face transformers library. "
|
||||||
|
"For the most up-to-date and high-performance version of the Falcon model code, please update to the latest version of transformers and then load the model "
|
||||||
|
"without the trust_remote_code=True argument.\n"
|
||||||
|
)
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
# Backward compatibility with n_embed kwarg
|
||||||
|
n_embed = kwargs.pop("n_embed", None)
|
||||||
|
self.hidden_size = hidden_size if n_embed is None else n_embed
|
||||||
|
self.num_hidden_layers = num_hidden_layers
|
||||||
|
self.num_attention_heads = num_attention_heads
|
||||||
|
self.layer_norm_epsilon = layer_norm_epsilon
|
||||||
|
self.initializer_range = initializer_range
|
||||||
|
self.use_cache = use_cache
|
||||||
|
self.hidden_dropout = hidden_dropout
|
||||||
|
self.attention_dropout = attention_dropout
|
||||||
|
|
||||||
|
self.bos_token_id = bos_token_id
|
||||||
|
self.eos_token_id = eos_token_id
|
||||||
|
self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads
|
||||||
|
self.alibi = alibi
|
||||||
|
self.new_decoder_architecture = new_decoder_architecture
|
||||||
|
self.multi_query = multi_query # Ignored when new_decoder_architecture is True
|
||||||
|
self.parallel_attn = parallel_attn
|
||||||
|
self.bias = bias
|
||||||
|
|
||||||
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def head_dim(self):
|
||||||
|
return self.hidden_size // self.num_attention_heads
|
||||||
|
|
||||||
|
@property
|
||||||
|
def rotary(self):
|
||||||
|
return not self.alibi
|
@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"_from_model_config": true,
|
"_from_model_config": true,
|
||||||
"bos_token_id": 1,
|
"bos_token_id": 11,
|
||||||
"eos_token_id": 2,
|
"eos_token_id": 11,
|
||||||
"transformers_version": "4.27.4"
|
"transformers_version": "4.33.0.dev0"
|
||||||
}
|
}
|
File diff suppressed because it is too large
Load Diff
@ -1,7 +1,11 @@
|
|||||||
{
|
{
|
||||||
"add_prefix_space": false,
|
"add_prefix_space": false,
|
||||||
"eos_token": "<|endoftext|>",
|
"eos_token": "<|endoftext|>",
|
||||||
|
"model_input_names": [
|
||||||
|
"input_ids",
|
||||||
|
"attention_mask"
|
||||||
|
],
|
||||||
"model_max_length": 2048,
|
"model_max_length": 2048,
|
||||||
"special_tokens_map_file": null,
|
"special_tokens_map_file": null,
|
||||||
"tokenizer_class": "PreTrainedTokenizerFast"
|
"tokenizer_class": "PreTrainedTokenizerFast"
|
||||||
}
|
}
|
Loading…
x
Reference in New Issue
Block a user