Move to in-library checkpoint (#81)
- Convert to in-library checkpoint (a68ca4bd1529de99d45d23edd76fddb759a204a7) - Preparations for transition to in-library checkpoint (3900116669a68ed777f5ce06a1d4d3cfe580693f) - Fix typo (8bda09072cc6d9aba99b24ee2c69939a316667d9) - Revert to Falcon naming (12c569a077dfd03ebecc377af7d4e940891ee315)
This commit is contained in:
parent
c47b371b31
commit
f1ba7d328c
@ -16,7 +16,7 @@ license: apache-2.0
|
||||
|
||||
*Paper coming soon 😊.*
|
||||
|
||||
|
||||
⚠️ Falcon is now available as a core model in the `transformers` library! To use the in-library version, please install the latest version of `transformers` with `pip install git+https://github.com/huggingface/transformers.git`, then simply remove the `trust_remote_code=True` argument from `from_pretrained()`.
|
||||
|
||||
# Call for Proposals : Falcon 40B - World's Top Ranked AI Model Empowers Exceptional Use Cases with Training Compute Power in Call for Proposals
|
||||
|
||||
@ -57,7 +57,6 @@ pipeline = transformers.pipeline(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
torch_dtype=torch.bfloat16,
|
||||
trust_remote_code=True,
|
||||
device_map="auto",
|
||||
)
|
||||
sequences = pipeline(
|
||||
@ -128,7 +127,6 @@ pipeline = transformers.pipeline(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
torch_dtype=torch.bfloat16,
|
||||
trust_remote_code=True,
|
||||
device_map="auto",
|
||||
)
|
||||
sequences = pipeline(
|
||||
@ -269,4 +267,4 @@ To learn more about the pretraining dataset, see the 📓 [RefinedWeb paper](htt
|
||||
Falcon-40B is made available under the Apache 2.0 license.
|
||||
|
||||
## Contact
|
||||
falconllm@tii.ae
|
||||
falconllm@tii.ae
|
||||
|
23
config.json
23
config.json
@ -2,16 +2,16 @@
|
||||
"alibi": false,
|
||||
"apply_residual_connection_post_layernorm": false,
|
||||
"architectures": [
|
||||
"RWForCausalLM"
|
||||
"FalconForCausalLM"
|
||||
],
|
||||
"attention_dropout": 0.0,
|
||||
"auto_map": {
|
||||
"AutoConfig": "configuration_RW.RWConfig",
|
||||
"AutoModel": "modelling_RW.RWModel",
|
||||
"AutoModelForSequenceClassification": "modelling_RW.RWForSequenceClassification",
|
||||
"AutoModelForTokenClassification": "modelling_RW.RWForTokenClassification",
|
||||
"AutoModelForQuestionAnswering": "modelling_RW.RWForQuestionAnswering",
|
||||
"AutoModelForCausalLM": "modelling_RW.RWForCausalLM"
|
||||
"AutoConfig": "configuration_falcon.FalconConfig",
|
||||
"AutoModel": "modeling_falcon.FalconModel",
|
||||
"AutoModelForSequenceClassification": "modeling_falcon.FalconForSequenceClassification",
|
||||
"AutoModelForTokenClassification": "modeling_falcon.FalconForTokenClassification",
|
||||
"AutoModelForQuestionAnswering": "modeling_falcon.FalconForQuestionAnswering",
|
||||
"AutoModelForCausalLM": "modeling_falcon.FalconForCausalLM"
|
||||
},
|
||||
"bias": false,
|
||||
"bos_token_id": 11,
|
||||
@ -20,10 +20,11 @@
|
||||
"hidden_size": 8192,
|
||||
"initializer_range": 0.02,
|
||||
"layer_norm_epsilon": 1e-05,
|
||||
"model_type": "RefinedWeb",
|
||||
"n_head": 128,
|
||||
"n_head_kv": 8,
|
||||
"n_layer": 60,
|
||||
"model_type": "falcon",
|
||||
"new_decoder_architecture": true,
|
||||
"num_attention_heads": 128,
|
||||
"num_hidden_layers": 60,
|
||||
"num_kv_heads": 8,
|
||||
"parallel_attn": true,
|
||||
"torch_dtype": "bfloat16",
|
||||
"transformers_version": "4.27.4",
|
||||
|
@ -1,75 +0,0 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Bloom configuration"""
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class RWConfig(PretrainedConfig):
|
||||
model_type = "RefinedWeb"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
attribute_map = {
|
||||
"num_hidden_layers": "n_layer",
|
||||
"num_attention_heads": "n_head",
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=250880,
|
||||
hidden_size=64,
|
||||
n_layer=2,
|
||||
n_head=8,
|
||||
layer_norm_epsilon=1e-5,
|
||||
initializer_range=0.02,
|
||||
use_cache=True,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
apply_residual_connection_post_layernorm=False,
|
||||
hidden_dropout=0.0,
|
||||
attention_dropout=0.0,
|
||||
n_head_kv=None,
|
||||
alibi=False,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
# Backward compatibility with n_embed kwarg
|
||||
n_embed = kwargs.pop("n_embed", None)
|
||||
self.hidden_size = hidden_size if n_embed is None else n_embed
|
||||
self.n_layer = n_layer
|
||||
self.n_head = n_head
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
self.initializer_range = initializer_range
|
||||
self.use_cache = use_cache
|
||||
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
||||
self.hidden_dropout = hidden_dropout
|
||||
self.attention_dropout = attention_dropout
|
||||
|
||||
self.bos_token_id = bos_token_id
|
||||
self.eos_token_id = eos_token_id
|
||||
self.n_head_kv = n_head if n_head_kv is None else n_head_kv
|
||||
self.alibi = alibi
|
||||
|
||||
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.hidden_size // self.n_head
|
||||
|
||||
@property
|
||||
def rotary(self):
|
||||
return not self.alibi
|
147
configuration_falcon.py
Normal file
147
configuration_falcon.py
Normal file
@ -0,0 +1,147 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Falcon configuration"""
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
|
||||
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
|
||||
}
|
||||
|
||||
|
||||
class FalconConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the
|
||||
[tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 65024):
|
||||
Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`FalconModel`]
|
||||
hidden_size (`int`, *optional*, defaults to 4544):
|
||||
Dimension of the hidden representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||
Number of hidden layers in the Transformer decoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 71):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether the model should return the last key/values attentions (not used by all models). Only relevant if
|
||||
`config.is_decoder=True`.
|
||||
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
||||
The epsilon used by the layer normalization layers.
|
||||
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout probability for MLP layers.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout probability for attention layers.
|
||||
num_kv_heads (`int`, *optional*):
|
||||
Number of key-value heads to use per attention layer. If unset, defaults to the same value as
|
||||
`num_attention_heads`.
|
||||
alibi (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use ALiBi positional biases during self-attention.
|
||||
new_decoder_architecture (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
|
||||
arguments are ignored, as the new decoder always uses parallel attention.
|
||||
multi_query (`bool`, *optional*, defaults to `True`):
|
||||
Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
|
||||
parallel_attn (`bool`, *optional*, defaults to `True`):
|
||||
Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
|
||||
instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
|
||||
bias (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use bias on Linear layers.
|
||||
bos_token_id (`int`, *optional*, defaults to 11):
|
||||
The id of the "beginning-of-sequence" token.
|
||||
eos_token_id (`int`, *optional*, defaults to 11):
|
||||
The id of the "end-of-sequence" token.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import FalconModel, FalconConfig
|
||||
|
||||
>>> # Initializing a small (2-layer) Falcon configuration
|
||||
>>> configuration = FalconConfig(num_hidden_layers=2)
|
||||
|
||||
>>> # Initializing a model from the small configuration
|
||||
>>> model = FalconModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
model_type = "falcon"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=65024,
|
||||
hidden_size=4544,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=71,
|
||||
layer_norm_epsilon=1e-5,
|
||||
initializer_range=0.02,
|
||||
use_cache=True,
|
||||
hidden_dropout=0.0,
|
||||
attention_dropout=0.0,
|
||||
num_kv_heads=None,
|
||||
alibi=False,
|
||||
new_decoder_architecture=False,
|
||||
multi_query=True,
|
||||
parallel_attn=True,
|
||||
bias=False,
|
||||
bos_token_id=11,
|
||||
eos_token_id=11,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
# Backward compatibility with n_embed kwarg
|
||||
n_embed = kwargs.pop("n_embed", None)
|
||||
self.hidden_size = hidden_size if n_embed is None else n_embed
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
self.initializer_range = initializer_range
|
||||
self.use_cache = use_cache
|
||||
self.hidden_dropout = hidden_dropout
|
||||
self.attention_dropout = attention_dropout
|
||||
|
||||
self.bos_token_id = bos_token_id
|
||||
self.eos_token_id = eos_token_id
|
||||
self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads
|
||||
self.alibi = alibi
|
||||
self.new_decoder_architecture = new_decoder_architecture
|
||||
self.multi_query = multi_query # Ignored when new_decoder_architecture is True
|
||||
self.parallel_attn = parallel_attn
|
||||
self.bias = bias
|
||||
|
||||
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
||||
|
||||
@property
|
||||
def head_dim(self):
|
||||
return self.hidden_size // self.num_attention_heads
|
||||
|
||||
@property
|
||||
def rotary(self):
|
||||
return not self.alibi
|
@ -1,6 +1,6 @@
|
||||
{
|
||||
"_from_model_config": true,
|
||||
"bos_token_id": 1,
|
||||
"eos_token_id": 2,
|
||||
"transformers_version": "4.27.4"
|
||||
}
|
||||
"bos_token_id": 11,
|
||||
"eos_token_id": 11,
|
||||
"transformers_version": "4.31.0.dev0"
|
||||
}
|
File diff suppressed because it is too large
Load Diff
@ -1,7 +1,11 @@
|
||||
{
|
||||
"add_prefix_space": false,
|
||||
"eos_token": "<|endoftext|>",
|
||||
"model_input_names": [
|
||||
"input_ids",
|
||||
"attention_mask"
|
||||
],
|
||||
"model_max_length": 2048,
|
||||
"special_tokens_map_file": null,
|
||||
"tokenizer_class": "PreTrainedTokenizerFast"
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user