54 lines
1.4 KiB
Markdown
54 lines
1.4 KiB
Markdown
---
|
|
tags:
|
|
- image-captioning
|
|
license: apache-2.0
|
|
|
|
---
|
|
|
|
# nlpconnect/vit-gpt2-image-captioning
|
|
|
|
This is an image captioning model training by @ydshieh in flax, this is pytorch version of https://huggingface.co/ydshieh/vit-gpt2-coco-en-ckpts model.
|
|
|
|
|
|
# Sample running code
|
|
|
|
```python
|
|
|
|
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
|
|
|
|
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
|
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
|
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model.to(device)
|
|
|
|
|
|
|
|
max_length = 16
|
|
num_beams = 4
|
|
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
|
def predict_step(image_paths):
|
|
images = []
|
|
for image_path in image_paths:
|
|
i_image = Image.open(image_path)
|
|
if i_image.mode != "RGB":
|
|
i_image = i_image.convert(mode="RGB")
|
|
|
|
images.append(i_image)
|
|
|
|
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
|
|
pixel_values = pixel_values.to(device)
|
|
|
|
output_ids = model.generate(pixel_values, **gen_kwargs)
|
|
|
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
|
preds = [pred.strip() for pred in preds]
|
|
return preds
|
|
|
|
|
|
predict_step(['doctor.e16ba4e4.jpg'] # ['a woman in a hospital bed with a woman in a hospital bed']
|
|
|
|
```
|
|
|