task_categories configs language license
question-answering
config_name data_files
default
split path
test test/*.csv
config_name data_files
AR_XY
split path
test test/mmlu_AR-XY.csv
config_name data_files
BN_BD
split path
test test/mmlu_BN-BD.csv
config_name data_files
DE_DE
split path
test test/mmlu_DE-DE.csv
config_name data_files
ES_LA
split path
test test/mmlu_ES-LA.csv
config_name data_files
FR_FR
split path
test test/mmlu_FR-FR.csv
config_name data_files
HI_IN
split path
test test/mmlu_HI-IN.csv
config_name data_files
ID_ID
split path
test test/mmlu_ID-ID.csv
config_name data_files
IT_IT
split path
test test/mmlu_IT-IT.csv
config_name data_files
JA_JP
split path
test test/mmlu_JA-JP.csv
config_name data_files
KO_KR
split path
test test/mmlu_KO-KR.csv
config_name data_files
PT_BR
split path
test test/mmlu_PT-BR.csv
config_name data_files
SW_KE
split path
test test/mmlu_SW-KE.csv
config_name data_files
YO_NG
split path
test test/mmlu_YO-NG.csv
config_name data_files
ZH_CN
split path
test test/mmlu_ZH-CN.csv
ar
bn
de
es
fr
hi
id
it
ja
ko
pt
sw
yo
zh
mit

Multilingual Massive Multitask Language Understanding (MMMLU)

The MMLU is a widely recognized benchmark of general knowledge attained by AI models. It covers a broad range of topics from 57 different categories, covering elementary-level knowledge up to advanced professional subjects like law, physics, history, and computer science.

We translated the MMLUs test set into 14 languages using professional human translators. Relying on human translators for this evaluation increases confidence in the accuracy of the translations, especially for low-resource languages like Yoruba. We are publishing the professional human translations and the code we use to run the evaluations.

This effort reflects our commitment to improving the multilingual capabilities of AI models, ensuring they perform accurately across languages, particularly for underrepresented communities. By prioritizing high-quality translations, we aim to make AI technology more inclusive and effective for users worldwide.

Locales

MMMLU contains the MMLU test set translated into the following locales:

  • AR_XY (Arabic)
  • BN_BD (Bengali)
  • DE_DE (German)
  • ES_LA (Spanish)
  • FR_FR (French)
  • HI_IN (Hindi)
  • ID_ID (Indonesian)
  • IT_IT (Italian)
  • JA_JP (Japanese)
  • KO_KR (Korean)
  • PT_BR (Brazilian Portuguese)
  • SW_KE (Swahili)
  • YO_NG (Yoruba)
  • ZH_CN (Simplified Chinese)

Sources

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., & Steinhardt, J. (2021). Measuring Massive Multitask Language Understanding.

OpenAI Simple Evals GitHub Repository