2024-11-11 16:57:23 +07:00
|
|
|
import gradio as gr
|
|
|
|
import requests
|
|
|
|
import base64
|
|
|
|
from PIL import Image
|
|
|
|
from io import BytesIO
|
|
|
|
import numpy as np
|
|
|
|
import random
|
2024-12-11 08:34:53 +00:00
|
|
|
import os
|
2024-11-11 16:57:23 +07:00
|
|
|
|
2024-12-11 08:54:38 +00:00
|
|
|
API_URL = 'https://hub.societyai.com/models/flux-1-schnell/infer'
|
2024-12-11 08:34:53 +00:00
|
|
|
API_TOKEN = os.environ.get("SAI_API_TOKEN", "")
|
2024-11-11 16:57:23 +07:00
|
|
|
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
MAX_IMAGE_SIZE = 2048
|
|
|
|
|
2024-12-30 14:16:59 +00:00
|
|
|
with gr.Blocks() as demo:
|
2024-11-11 16:57:23 +07:00
|
|
|
gr.Markdown("## FLUX.1-schnell Image Generation")
|
|
|
|
|
|
|
|
with gr.Row():
|
|
|
|
prompt = gr.Textbox(label="Prompt", lines=2, placeholder="Enter your prompt here")
|
|
|
|
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
with gr.Row():
|
|
|
|
width = gr.Number(value=512, label="Width", maximum=1920)
|
|
|
|
height = gr.Number(value=512, label="Height", maximum=1080)
|
|
|
|
|
|
|
|
with gr.Row():
|
|
|
|
num_steps = gr.Number(value=4, label="Number of Steps (1-4)", minimum=1, maximum=4)
|
|
|
|
guidance_scale = gr.Slider(0.0, 10.0, 0.0, value=7.5, label="Guidance Scale")
|
|
|
|
|
|
|
|
with gr.Row():
|
|
|
|
seed = gr.Slider(
|
|
|
|
label="Seed",
|
|
|
|
minimum=0,
|
|
|
|
maximum=MAX_SEED,
|
|
|
|
step=1,
|
|
|
|
value=0,
|
|
|
|
)
|
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
|
|
|
|
|
generate_button = gr.Button("Generate Image")
|
|
|
|
output_image = gr.Image(type="numpy", label="Generated Image")
|
|
|
|
message = gr.Textbox(label="Status", interactive=False)
|
|
|
|
|
|
|
|
def generate_image(prompt, width, height, num_steps, guidance_scale, seed, randomize_seed):
|
|
|
|
try:
|
|
|
|
# Validation: Ensure width and height are divisible by 16
|
|
|
|
if width % 8 != 0 or height % 8 != 0:
|
|
|
|
return None, "Error: Both width and height must be divisible by 8."
|
|
|
|
if randomize_seed:
|
|
|
|
seed = random.randint(0, MAX_SEED)
|
|
|
|
# Prepare the data payload
|
|
|
|
inputs = [
|
|
|
|
{
|
|
|
|
"name": "PROMPT",
|
|
|
|
"shape": [1],
|
|
|
|
"datatype": "BYTES",
|
|
|
|
"data": [prompt]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"name": "INIT_IMAGE",
|
|
|
|
"shape": [1],
|
|
|
|
"datatype": "BYTES",
|
|
|
|
"data": [""] # not supported
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"name": "WIDTH",
|
|
|
|
"shape": [1],
|
|
|
|
"datatype": "INT32",
|
|
|
|
"data": [int(width)]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"name": "HEIGHT",
|
|
|
|
"shape": [1],
|
|
|
|
"datatype": "INT32",
|
|
|
|
"data": [int(height)]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"name": "NUM_STEPS",
|
|
|
|
"shape": [1],
|
|
|
|
"datatype": "INT32",
|
|
|
|
"data": [int(num_steps)]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"name": "GUIDANCE_SCALE",
|
|
|
|
"shape": [1],
|
|
|
|
"datatype": "FP32",
|
|
|
|
"data": [float(guidance_scale)]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"name": "SEED",
|
|
|
|
"shape": [1],
|
|
|
|
"datatype": "INT32",
|
|
|
|
"data": [int(seed)]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"name": "IMAGE_STRENGTH",
|
|
|
|
"shape": [1],
|
|
|
|
"datatype": "FP32",
|
|
|
|
"data": [0.0] # not supported
|
|
|
|
}
|
|
|
|
]
|
|
|
|
|
|
|
|
payload = {
|
|
|
|
"inputs": inputs,
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "IMAGE"
|
|
|
|
}
|
|
|
|
]
|
|
|
|
}
|
|
|
|
|
|
|
|
headers = {
|
2024-12-11 08:34:53 +00:00
|
|
|
"Content-Type": "application/json",
|
|
|
|
"Authorization": f"Bearer {API_TOKEN}"
|
2024-11-11 16:57:23 +07:00
|
|
|
}
|
|
|
|
|
|
|
|
# Send the POST request
|
|
|
|
response = requests.post(API_URL, headers=headers, json=payload)
|
|
|
|
|
|
|
|
if response.status_code == 200:
|
|
|
|
# Parse the response
|
|
|
|
result = response.json()
|
|
|
|
image_base64 = result['outputs'][0]['data'][0]
|
|
|
|
# Decode the base64 image data
|
|
|
|
image_data = base64.b64decode(image_base64)
|
|
|
|
# Convert to numpy array
|
|
|
|
image = Image.open(BytesIO(image_data))
|
|
|
|
image_np = np.array(image)
|
|
|
|
return image_np, "Image generated successfully.", seed
|
|
|
|
else:
|
|
|
|
# Handle error
|
|
|
|
return None, f"Error: {response.status_code} - {response.text}", seed
|
|
|
|
except Exception as e:
|
|
|
|
return None, f"Error: {str(e)}", seed
|
|
|
|
|
|
|
|
generate_button.click(
|
|
|
|
generate_image,
|
|
|
|
inputs=[prompt, width, height, num_steps, guidance_scale, seed, randomize_seed],
|
|
|
|
outputs=[output_image, message, seed]
|
|
|
|
)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
demo.launch()
|